TY - JOUR
T1 - Maize cultivar mixtures increase aboveground biomass and grain quality via trait dissimilarity and plasticity
AU - Su, Ye
AU - Yu, Rui Peng
AU - Xu, Hua Sen
AU - Zhang, Wei Ping
AU - Yang, Hao
AU - Surigaoge, Surigaoge
AU - Callaway, Ragan M.
AU - Li, Long
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5
Y1 - 2024/5
N2 - Despite being visually cryptic, conspecific cultivar mixtures increase diversity and can increase productivity in agricultural systems. However, the mechanisms underlying this increase are unclear. In natural systems, differences in traits among species and among ecotypes correspond with diversity-increased productivity, but whether these attributes are important in cultivar mixtures is still unclear. To explore how cultivar mixtures affect agroecosystem productivity and the roles of trait dissimilarity, we conducted a four-year (2017–2020) field experiment in Northeast China with maize. The experimental treatments included eight single cultivar monocultures, four two-cultivar mixtures, one four-cultivar mixture, one six-cultivar mixture and one eight-cultivar mixture. Experiments were arranged in a randomized complete block design with three replications. Across the four years, all cultivar mixture combinations increased aboveground biomass and crude protein in grain by 7.0% and 4.1%, respectively, compared to the average of the eight monocultures. Grain yield, aboveground biomass, and grain crude protein in overyielding cultivar combinations increased by 2.0–9.0%, 13.0–20.0% and 4.8–10.7%, respectively, compared to the average of the component monocultures of each mixture over four years. We calculated positive complementarity effects for grain yield, aboveground biomass and grain crude protein. All selection effects of cultivar mixtures were negative or neutral. There were strong positive correlations between complementarity effect and functional trait dissimilarity in cultivar mixtures, based on grain yields (P< 0.010), aboveground biomass (P< 0.001) and grain crude protein (P< 0.050), whereas there were no such positive relationships between selection effects and functional trait dissimilarity. Moreover, we found higher levels of trait dissimilarity for shoot diameter, leaf area and specific leaf area in cultivar mixtures than in monocultures. Also, the shoot diameter, leaf area and specific leaf area of specific cultivars were higher in mixtures than in monocultures. Our results indicated that niche complementarity derives from functional trait dissimilarity, and strong complementarity effects correlate with greater functional trait dissimilarity in cultivar mixtures. These findings provide evidence that plasticity in traits, rather than only inherent traits, contributed to the diversity effects, and the greater functional trait dissimilarity among cultivars in mixtures can increase crop productivity via increasing cryptic diversity in agroecosystems. Our results link changes to plant aboveground traits in cultivar mixtures, which shed light on yield advantages in diverse agroecosystems.
AB - Despite being visually cryptic, conspecific cultivar mixtures increase diversity and can increase productivity in agricultural systems. However, the mechanisms underlying this increase are unclear. In natural systems, differences in traits among species and among ecotypes correspond with diversity-increased productivity, but whether these attributes are important in cultivar mixtures is still unclear. To explore how cultivar mixtures affect agroecosystem productivity and the roles of trait dissimilarity, we conducted a four-year (2017–2020) field experiment in Northeast China with maize. The experimental treatments included eight single cultivar monocultures, four two-cultivar mixtures, one four-cultivar mixture, one six-cultivar mixture and one eight-cultivar mixture. Experiments were arranged in a randomized complete block design with three replications. Across the four years, all cultivar mixture combinations increased aboveground biomass and crude protein in grain by 7.0% and 4.1%, respectively, compared to the average of the eight monocultures. Grain yield, aboveground biomass, and grain crude protein in overyielding cultivar combinations increased by 2.0–9.0%, 13.0–20.0% and 4.8–10.7%, respectively, compared to the average of the component monocultures of each mixture over four years. We calculated positive complementarity effects for grain yield, aboveground biomass and grain crude protein. All selection effects of cultivar mixtures were negative or neutral. There were strong positive correlations between complementarity effect and functional trait dissimilarity in cultivar mixtures, based on grain yields (P< 0.010), aboveground biomass (P< 0.001) and grain crude protein (P< 0.050), whereas there were no such positive relationships between selection effects and functional trait dissimilarity. Moreover, we found higher levels of trait dissimilarity for shoot diameter, leaf area and specific leaf area in cultivar mixtures than in monocultures. Also, the shoot diameter, leaf area and specific leaf area of specific cultivars were higher in mixtures than in monocultures. Our results indicated that niche complementarity derives from functional trait dissimilarity, and strong complementarity effects correlate with greater functional trait dissimilarity in cultivar mixtures. These findings provide evidence that plasticity in traits, rather than only inherent traits, contributed to the diversity effects, and the greater functional trait dissimilarity among cultivars in mixtures can increase crop productivity via increasing cryptic diversity in agroecosystems. Our results link changes to plant aboveground traits in cultivar mixtures, which shed light on yield advantages in diverse agroecosystems.
KW - Biodiversity effects
KW - Crude protein content
KW - Functional trait
KW - Productivity
KW - Variety diversity
UR - http://www.scopus.com/inward/record.url?scp=85188667760&partnerID=8YFLogxK
U2 - 10.1016/j.eja.2024.127160
DO - 10.1016/j.eja.2024.127160
M3 - Article
AN - SCOPUS:85188667760
SN - 1161-0301
VL - 156
JO - European Journal of Agronomy
JF - European Journal of Agronomy
M1 - 127160
ER -