TY - JOUR
T1 - Measuring molecular interactions in solution using multi-wavelength analytical ultracentrifugation
T2 - Combining spectral analysis with hydrodynamics
AU - Demeler, Borries
N1 - Publisher Copyright:
© The Authors.
PY - 2019
Y1 - 2019
N2 - In 1926, the Swedish scientist Theodor Svedberg was awarded the Nobel Prize in Chemistry for his work on a disperse system, and for studying the colloidal properties of proteins. This work was, to a large extent, made possible by his invention of a revolutionary tool, the analytical ultracentrifuge. These days, technological advances in hardware and computing have transformed the field of analytical ultracentrifugation (AUC) by enabling entirely new classes of experiments and modes of measurement unimaginable by Svedberg, making AUC once again an indispensable tool for modern biomedical research. In this article these advances and their impact on studies of interacting molecules will be discussed, with particular emphasis on a new method termed multi-wavelength analytical ultracentrifugation (MWL-AUC). Novel detectors allow us to add a second dimension to the separation of disperse and heterogeneous systems: in addition to the traditional hydrodynamic separation of colloidal mixtures, it is now possible to identify the sedimenting molecules by their spectral absorbance properties. The potential for this advance is significant for the study of a large range of systems. A further advance has occurred in data management and computational capabilities, opening doors to improved analysis methods, as well as direct networking with the instrument, facilitating data acquisition and data handling, and significant increases in data density from faster detectors with higher resolution capability.
AB - In 1926, the Swedish scientist Theodor Svedberg was awarded the Nobel Prize in Chemistry for his work on a disperse system, and for studying the colloidal properties of proteins. This work was, to a large extent, made possible by his invention of a revolutionary tool, the analytical ultracentrifuge. These days, technological advances in hardware and computing have transformed the field of analytical ultracentrifugation (AUC) by enabling entirely new classes of experiments and modes of measurement unimaginable by Svedberg, making AUC once again an indispensable tool for modern biomedical research. In this article these advances and their impact on studies of interacting molecules will be discussed, with particular emphasis on a new method termed multi-wavelength analytical ultracentrifugation (MWL-AUC). Novel detectors allow us to add a second dimension to the separation of disperse and heterogeneous systems: in addition to the traditional hydrodynamic separation of colloidal mixtures, it is now possible to identify the sedimenting molecules by their spectral absorbance properties. The potential for this advance is significant for the study of a large range of systems. A further advance has occurred in data management and computational capabilities, opening doors to improved analysis methods, as well as direct networking with the instrument, facilitating data acquisition and data handling, and significant increases in data density from faster detectors with higher resolution capability.
UR - http://www.scopus.com/inward/record.url?scp=85075124076&partnerID=8YFLogxK
U2 - 10.1042/bio04102014
DO - 10.1042/bio04102014
M3 - Article
AN - SCOPUS:85075124076
SN - 0954-982X
VL - 41
SP - 14
EP - 18
JO - Biochemist
JF - Biochemist
IS - 2
ER -