Meta-Learning for Color-to-Infrared Cross-Modal Style Transfer

Evelyn A. Stump, Francesco Luzi, Leslie M. Collins, Jordan M. Malof

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image-based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.

Original languageEnglish
Title of host publicationProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5460-5469
Number of pages10
ISBN (Electronic)9798331510831
DOIs
StatePublished - 2025
Event2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 - Tucson, United States
Duration: Feb 28 2025Mar 4 2025

Publication series

NameProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025

Conference

Conference2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Country/TerritoryUnited States
CityTucson
Period02/28/2503/4/25

Fingerprint

Dive into the research topics of 'Meta-Learning for Color-to-Infrared Cross-Modal Style Transfer'. Together they form a unique fingerprint.

Cite this