TY - GEN
T1 - Meta-Learning for Color-to-Infrared Cross-Modal Style Transfer
AU - Stump, Evelyn A.
AU - Luzi, Francesco
AU - Collins, Leslie M.
AU - Malof, Jordan M.
N1 - Publisher Copyright:
© 2025 IEEE.
PY - 2025
Y1 - 2025
N2 - Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image-based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.
AB - Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image-based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.
UR - https://www.scopus.com/pages/publications/105003635431
U2 - 10.1109/WACV61041.2025.00533
DO - 10.1109/WACV61041.2025.00533
M3 - Conference contribution
AN - SCOPUS:105003635431
T3 - Proceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
SP - 5460
EP - 5469
BT - Proceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Y2 - 28 February 2025 through 4 March 2025
ER -