Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)

Yude Pan, Jerry M. Melillo, A. David McGuire, David W. Kicklighter, Louis F. Pitelka, Kathy Hibbard, Lars L. Pierce, Steven W. Running, Dennis S. Ojima, William J. Parton, David S. Schimel, J. Borchers, R. Neilson, H. H. Fisher, T. G.F. Kittel, N. A. Rossenbloom, S. Fox, A. Haxeltine, I. C. Prentice, S. SitchA. Janetos, R. McKeown, R. Nemani, T. Painter, B. Rizzo, T. Smith, F. I. Woodward

Research output: Contribution to journalArticlepeer-review

122 Scopus citations

Abstract

Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2.

Original languageEnglish
Pages (from-to)389-404
Number of pages16
JournalOecologia
Volume114
Issue number3
DOIs
StatePublished - Apr 2 1998

Funding

Acknowledgement This work was funded by the Electric Power Research Institute, NASA, and the USDA Forest Service as a contribution to the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

FundersFunder number
National Aeronautics and Space Administration
U.S. Forest Service-Retired
Electric Power Research Institute

    Keywords

    • Biogeochemistry
    • Carbon dioxide
    • Global change
    • Net primary production (NPP)
    • Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)

    Fingerprint

    Dive into the research topics of 'Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)'. Together they form a unique fingerprint.

    Cite this