TY - JOUR
T1 - Multiscale resistant kernel surfaces derived from inferred gene flow
T2 - An application with vernal pool breeding salamanders
AU - Winiarski, Kristopher J.
AU - Peterman, William E.
AU - Whiteley, Andrew R.
AU - McGarigal, Kevin
N1 - Publisher Copyright:
© 2019 John Wiley & Sons Ltd
PY - 2020/1/1
Y1 - 2020/1/1
N2 - The importance of assessing spatial data at multiple scales when modelling species–environment relationships has been highlighted by several empirical studies. However, no landscape genetics studies have optimized landscape resistance surfaces by evaluating relevant spatial predictors at multiple spatial scales. Here, we model multiscale/layer landscape resistance surfaces to estimate resistance to inferred gene flow for two vernal pool breeding salamander species, spotted (Ambystoma maculatum) and marbled (A. opacum) salamanders. Multiscale resistance surface models outperformed spatial layers modelled at their original spatial scale. A resistance surface with forest land cover at a 500-m Gaussian kernel bandwidth and normalized vegetation index at a 100-m Gaussian kernel bandwidth was the top optimized resistance surface for A. maculatum, while a resistance surface with traffic rate and topographic curvature, both at a 500-m Gaussian kernel bandwidth, was the top optimized resistance surface for A. opacum. Species-specific resistant kernels were fit at all vernal pools in our study area with the optimized multiscale/layer resistance surface controlling kernel spread. Vernal pools were then evaluated and scored based on surrounding upland habitat (local score) and connectivity with other vernal pools on the landscape, with resistant kernels driving vernal pool connectivity scores. As expected, vernal pools that scored highest were in areas within forested habitats and with high vernal pool densities and low species-specific landscape resistance. Our findings highlight the success of using a novel analytical approach in a multiscale framework with applications beyond vernal pool amphibian conservation.
AB - The importance of assessing spatial data at multiple scales when modelling species–environment relationships has been highlighted by several empirical studies. However, no landscape genetics studies have optimized landscape resistance surfaces by evaluating relevant spatial predictors at multiple spatial scales. Here, we model multiscale/layer landscape resistance surfaces to estimate resistance to inferred gene flow for two vernal pool breeding salamander species, spotted (Ambystoma maculatum) and marbled (A. opacum) salamanders. Multiscale resistance surface models outperformed spatial layers modelled at their original spatial scale. A resistance surface with forest land cover at a 500-m Gaussian kernel bandwidth and normalized vegetation index at a 100-m Gaussian kernel bandwidth was the top optimized resistance surface for A. maculatum, while a resistance surface with traffic rate and topographic curvature, both at a 500-m Gaussian kernel bandwidth, was the top optimized resistance surface for A. opacum. Species-specific resistant kernels were fit at all vernal pools in our study area with the optimized multiscale/layer resistance surface controlling kernel spread. Vernal pools were then evaluated and scored based on surrounding upland habitat (local score) and connectivity with other vernal pools on the landscape, with resistant kernels driving vernal pool connectivity scores. As expected, vernal pools that scored highest were in areas within forested habitats and with high vernal pool densities and low species-specific landscape resistance. Our findings highlight the success of using a novel analytical approach in a multiscale framework with applications beyond vernal pool amphibian conservation.
KW - Ambystoma maculatum
KW - Ambystoma opacum
KW - ResistanceGA
KW - circuit theory
KW - isolation by resistance
KW - landscape genetics
KW - resistance surface
UR - http://www.scopus.com/inward/record.url?scp=85074022589&partnerID=8YFLogxK
U2 - 10.1111/1755-0998.13089
DO - 10.1111/1755-0998.13089
M3 - Article
C2 - 31484210
AN - SCOPUS:85074022589
SN - 1755-098X
VL - 20
SP - 97
EP - 113
JO - Molecular Ecology Resources
JF - Molecular Ecology Resources
IS - 1
ER -