Abstract
Glutamate transporters maintain low synaptic concentrations of neurotransmitter by coupling uptake to flux of other ions. After cotransport of glutamic acid with Na+, the cycle is completed by countertransport of K+. We have identified an amino acid residue (glutamate 404) influencing ion coupling in a domain of the transporter implicated previously in kainate binding. Mutation of this residue to aspartate (E404D) prevents both forward and reverse transport induced by K+. Sodium-dependent transmitter exchange and a transporter-mediated chloride conductance are unaffected by the mutation, indicating that this residue selectively influences potassium flux coupling. The results support a kinetic model in which sodium and potassium are translocated in distinct steps and suggest that this highly conserved region of the transporter is intimately associated with the ion permeation pathway.
| Original language | English |
|---|---|
| Pages (from-to) | 1703-1708 |
| Number of pages | 6 |
| Journal | Journal of Biological Chemistry |
| Volume | 272 |
| Issue number | 3 |
| DOIs | |
| State | Published - 1997 |