TY - JOUR
T1 - Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development
AU - Castle, Sarah C.
AU - Sullivan, Benjamin W.
AU - Knelman, Joseph
AU - Hood, Eran
AU - Nemergut, Diana R.
AU - Schmidt, Steven K.
AU - Cleveland, Cory C.
N1 - Publisher Copyright:
© 2017, Springer-Verlag GmbH Germany.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches—a nutrient addition microcosm experiment and extracellular enzyme assays—to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.
AB - A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches—a nutrient addition microcosm experiment and extracellular enzyme assays—to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.
KW - Extracellular enzymes
KW - Nutrient fertilization
KW - Primary succession
KW - Soil respiration
UR - http://www.scopus.com/inward/record.url?scp=85030661471&partnerID=8YFLogxK
U2 - 10.1007/s00442-017-3965-6
DO - 10.1007/s00442-017-3965-6
M3 - Article
C2 - 28983721
AN - SCOPUS:85030661471
SN - 0029-8549
VL - 185
SP - 513
EP - 524
JO - Oecologia
JF - Oecologia
IS - 3
ER -