Abstract
Population restoration is an inherently costly conservation practice typically reliant on animal translocations. There are many approaches to translocation and consideration is paid to understanding how various translocation models influence restoration success. Translocation strategies are often designed to meet site-specific objectives, minimize cost, and maximize success. We investigated genetic diversity retention associated with the low-founder, multi-release, single admixed stock translocation model of the Missouri elk (Cervus canadensis) restoration in 2011–2013. We further estimated effective population size and projected future losses in genetic diversity if the restored Missouri elk herd is maintained at the population size objective with no immigration from neighboring states. We observed relatively high levels of genetic diversity retention as evidenced by minimal losses in allelic richness and expected heterozygosity. Our projections indicated 90% genetic diversity retention within the Missouri population for roughly 130 years. Where number of progeny or source stocks are limited by resource or disease considerations, use of a relatively low-founder, single admixed source may enable retention of genetic variation, while minimizing costs.
| Original language | English |
|---|---|
| Article number | e598 |
| Journal | Conservation Science and Practice |
| Volume | 4 |
| Issue number | 2 |
| DOIs | |
| State | Published - Feb 2022 |
Funding
Missouri Department of Conservation; Rocky Mountain Elk Foundation; U.S. Fish and Wildlife Service Wildlife Restoration Grant; Boone and Crockett Club University Program Funding information The authors acknowledge the Missouri Department of Conservation and the Kentucky Department of Fish and Wildlife for translocating the elk used in this study. The authors thank multiple Missouri Department of Conservation staff for their assistance including: R. Houf, S. McWilliams, P. Mabry, M. Price, P. Vessels, and D. Hasenbeck. The authors are grateful to A. Bleisch and T. Smith for contributing to elk capture and the collection of genetic samples within Missouri. The authors appreciate the field access to National Park Service property and assistance from K. Houf. The authors additionally thank the many technicians and volunteers who helped with fieldwork.
| Funders |
|---|
| Kentucky Department of Fish and Wildlife Resources |
| Missouri Department of Conservation |