TY - JOUR
T1 - Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia
AU - Woods, H. Arthur
AU - Moran, Amy L.
AU - Arango, Claudia P.
AU - Mullen, Lindy
AU - Shields, Chris
PY - 2009/3/22
Y1 - 2009/3/22
N2 - Compared to temperate and tropical relatives, some high-latitude marine species are large-bodied, a phenomenon known as polar gigantism. A leading hypothesis on the physiological basis of gigantism posits that, in polar water, high oxygen availability coupled to low metabolic rates relieves constraints on oxygen transport and allows the evolution of large body size. Here, we test the oxygen hypothesis using Antarctic pycnogonids, which have been evolving in very cold conditions (-1.8-0°C) for several million years and contain spectacular examples of gigantism. Pycnogonids from 12 species, spanning three orders of magnitude in body mass, were collected from McMurdo Sound, Antarctica. Individual sea spiders were forced into activity and their performance was measured at different experimental levels of dissolved oxygen (DO). The oxygen hypothesis predicts that, all else being equal, large pycnogonids should perform disproportionately poorly in hypoxia, an outcome that would appear as a statistically significant interaction between body size and oxygen level. In fact, although we found large effects of DO on performance, and substantial interspecific variability in oxygen sensitivity, there was no evidence for size×DO interactions. These data do not support the oxygen hypothesis of Antarctic pycnogonid gigantism and suggest that explanations must be sought in other ecological or evolutionary processes.
AB - Compared to temperate and tropical relatives, some high-latitude marine species are large-bodied, a phenomenon known as polar gigantism. A leading hypothesis on the physiological basis of gigantism posits that, in polar water, high oxygen availability coupled to low metabolic rates relieves constraints on oxygen transport and allows the evolution of large body size. Here, we test the oxygen hypothesis using Antarctic pycnogonids, which have been evolving in very cold conditions (-1.8-0°C) for several million years and contain spectacular examples of gigantism. Pycnogonids from 12 species, spanning three orders of magnitude in body mass, were collected from McMurdo Sound, Antarctica. Individual sea spiders were forced into activity and their performance was measured at different experimental levels of dissolved oxygen (DO). The oxygen hypothesis predicts that, all else being equal, large pycnogonids should perform disproportionately poorly in hypoxia, an outcome that would appear as a statistically significant interaction between body size and oxygen level. In fact, although we found large effects of DO on performance, and substantial interspecific variability in oxygen sensitivity, there was no evidence for size×DO interactions. These data do not support the oxygen hypothesis of Antarctic pycnogonid gigantism and suggest that explanations must be sought in other ecological or evolutionary processes.
KW - Antarctica
KW - Oxygen
KW - Polar gigantism
KW - Sea spider
KW - Symmorphosis
KW - Temperature
UR - http://www.scopus.com/inward/record.url?scp=60049097621&partnerID=8YFLogxK
U2 - 10.1098/rspb.2008.1489
DO - 10.1098/rspb.2008.1489
M3 - Article
C2 - 19129117
AN - SCOPUS:60049097621
SN - 0962-8452
VL - 276
SP - 1069
EP - 1075
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
IS - 1659
ER -