Parameter and uncertainty estimation for dynamical systems using surrogate stochastic processes

Matthias Chung, Mickael Binois, Robert B. Gramacy, Johnathan M. Bardsley, David J. Moquin, Amanda P. Smith, Amber M. Smith

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging mathematical theory with empirical measurements in a statistically coherent way is critical and challenges abound, e.g., ill-posedness of the parameter estimation problem, proper regularization and incorporation of prior knowledge, and computational limitations. To address these issues, we propose a new method for learning pa-rameterized dynamical systems from data. We first customize and fit a surrogate stochastic process directly to observational data, front-loading with statistical learning to respect prior knowledge (e.g., smoothness), cope with challenging data features like heteroskedasticity, heavy tails, and censoring. Then, samples of the stochastic process are used as ``surrogate data"" and point estimates are computed via ordinary point estimation methods in a modular fashion. Attractive features of this two-step approach include modularity and trivial parallelizability. We demonstrate its advantages on a predator-prey simulation study and on a real-world application involving within-host influenza virus infection data paired with a viral kinetic model, with comparisons to a more conventional Markov chain Monte Carlo (MCMC) based Bayesian approach.

Original languageEnglish
Pages (from-to)A2212-A2238
JournalSIAM Journal on Scientific Computing
Issue number4
StatePublished - 2019


  • Dynamical systems
  • Gaussian process
  • Inverse problems
  • Parameter estimation
  • Uncertainty estimation
  • Viral kinetic model


Dive into the research topics of 'Parameter and uncertainty estimation for dynamical systems using surrogate stochastic processes'. Together they form a unique fingerprint.

Cite this