TY - JOUR
T1 - Pharmacological characterization of intracellular, membrane, and plasma binding sites for corticosterone in house sparrows
AU - Breuner, Creagh W.
AU - Orchinik, Miles
N1 - Funding Information:
We thank Meredith Swett and Keith and Sandy Kriedler for assistance catching house sparrows. Dr. R.R. Sakai kindly supplied RU28362 and RU28318. This work was supported by NSF DBI-9804183 and IBN-0202676 to C.W. Breuner and IBN-9604200 and IBN-0220473 to M. Orchinik.
PY - 2009/9/1
Y1 - 2009/9/1
N2 - The diversity and specificity of glucocorticoid effects are dependent on cell-specific receptor mechanisms. Three known corticosteroid receptors mediate tissue effects of glucocorticoids in vertebrates: two intracellular receptors that act primarily as ligand-activated transcription factors, and a membrane-associated receptor. The intracellular receptor sub-types have been well characterized in mammals, however relatively little is known about them across non-mammalian vertebrates. The membrane-associated receptors are poorly characterized in most vertebrate taxa. To explore the basis for glucocorticoid action in birds, we pharmacologically characterized the three putative corticosteroid receptors in the brain, as well as a plasma corticosterone binding globulin, in the house sparrow (Passer domesticus). We found that house sparrow brain cytosol contained two distinguishable binding sites for corticosterone. A high affinity, mineralocorticoid-like receptor had subnanomolar affinity for corticosterone (Kd ∼ 0.2 nM). However, this 'MR-like' high-affinity receptor did not bind RU28318 or canrenoic acid, two compounds that bind mammalian MR with high affinity. A lower-affinity, glucocorticoid-like receptor in brain cytosol bound corticosterone with an average Kd = 5.61 nM. This GR-like receptor showed subnanomolar affinity for RU 486. MR- and GR-like receptors were found in equal numbers in whole brain assays (average Bmax = 69 and 62 fmol/mg protein, respectively). House sparrow brain membranes contain a single binding site specific for glucocorticoids, with characteristics consistent with a steroid/receptor interaction. Corticosterone affinity for this putative membrane receptor was approximately 24 nM, with apparent Bmax = 177 fmol/mg protein. House sparrow plasma contained a single binding site for [3H]corticosterone. Specific binding to plasma sites was inhibited by glucocorticoids, progesterone, and testosterone. Testosterone binding to this corticosteroid binding globulin is noteworthy as sex steroid-specific binding globulins have not been identified in birds. Taken together, these data extend our ability to evaluate the comparative actions of glucocorticoids, increase our understanding of mechanisms behind the tissue specificity of glucocorticoid action, and offer insight into the evolution of glucocorticoid action in vertebrates.
AB - The diversity and specificity of glucocorticoid effects are dependent on cell-specific receptor mechanisms. Three known corticosteroid receptors mediate tissue effects of glucocorticoids in vertebrates: two intracellular receptors that act primarily as ligand-activated transcription factors, and a membrane-associated receptor. The intracellular receptor sub-types have been well characterized in mammals, however relatively little is known about them across non-mammalian vertebrates. The membrane-associated receptors are poorly characterized in most vertebrate taxa. To explore the basis for glucocorticoid action in birds, we pharmacologically characterized the three putative corticosteroid receptors in the brain, as well as a plasma corticosterone binding globulin, in the house sparrow (Passer domesticus). We found that house sparrow brain cytosol contained two distinguishable binding sites for corticosterone. A high affinity, mineralocorticoid-like receptor had subnanomolar affinity for corticosterone (Kd ∼ 0.2 nM). However, this 'MR-like' high-affinity receptor did not bind RU28318 or canrenoic acid, two compounds that bind mammalian MR with high affinity. A lower-affinity, glucocorticoid-like receptor in brain cytosol bound corticosterone with an average Kd = 5.61 nM. This GR-like receptor showed subnanomolar affinity for RU 486. MR- and GR-like receptors were found in equal numbers in whole brain assays (average Bmax = 69 and 62 fmol/mg protein, respectively). House sparrow brain membranes contain a single binding site specific for glucocorticoids, with characteristics consistent with a steroid/receptor interaction. Corticosterone affinity for this putative membrane receptor was approximately 24 nM, with apparent Bmax = 177 fmol/mg protein. House sparrow plasma contained a single binding site for [3H]corticosterone. Specific binding to plasma sites was inhibited by glucocorticoids, progesterone, and testosterone. Testosterone binding to this corticosteroid binding globulin is noteworthy as sex steroid-specific binding globulins have not been identified in birds. Taken together, these data extend our ability to evaluate the comparative actions of glucocorticoids, increase our understanding of mechanisms behind the tissue specificity of glucocorticoid action, and offer insight into the evolution of glucocorticoid action in vertebrates.
KW - Avian
KW - CBG
KW - GR
KW - Glucocorticoid
KW - MR
KW - Mineralocorticoid
KW - Passerine
KW - mGR
UR - http://www.scopus.com/inward/record.url?scp=67649771788&partnerID=8YFLogxK
U2 - 10.1016/j.ygcen.2009.01.027
DO - 10.1016/j.ygcen.2009.01.027
M3 - Article
C2 - 19236873
AN - SCOPUS:67649771788
SN - 0016-6480
VL - 163
SP - 214
EP - 224
JO - General and Comparative Endocrinology
JF - General and Comparative Endocrinology
IS - 1-2
ER -