Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion

Jesse C. Hay, Thomas F.J. Martin

Research output: Contribution to journalArticlepeer-review

321 Scopus citations


Elucidation of the reactions responsible for the calcium-regulated fusion of secretory granules with the plasma membrane in secretory cells would be facilitated by the identification of participant proteins having known biochemical activities. The successful characterization of cytosolic1-3 and vesicle4 proteins that may function in calcium-regulated secretion has not yet revealed the molecular events underlying this process. Regulated secretion consists of sequential priming and triggering steps which depend on ATP and Ca2+, respectively, and require distinct cytosolic proteins6. Characterization of priming-specific factors (PEP proteins) should enable the ATP-requiring reactions to be identified. Here we show that one of the mammalian priming factors (PEP3) is identical to phosphatidylinositol transfer protein (PITP)7. The physiological role of PITP was previously unknown. We also find that SEC14p, the yeast phosphatidylinositol transfer protein which is essential for constitutive secretion8-10, can substitute for PEP3/PITP in priming. Our results indicate that a role for phospholipid transfer proteins is conserved in the constitutive and regulated secretory pathways.

Original languageEnglish
Pages (from-to)572-575
Number of pages4
Issue number6455
StatePublished - 1993


Dive into the research topics of 'Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion'. Together they form a unique fingerprint.

Cite this