TY - JOUR
T1 - Phylogenetics and ecomorphology of emarginate primary feathers
AU - Klaassen van Oorschot, Brett
AU - Tang, Ho Kwan
AU - Tobalske, Bret W.
N1 - Publisher Copyright:
© 2017 Wiley Periodicals, Inc.
PY - 2017/7
Y1 - 2017/7
N2 - Wing tip slots are a distinct morphological trait broadly expressed across the avian clade, but are generally perceived to be unique to soaring raptors. These slots are the result of emarginations on the distal leading and trailing edges of primary feathers, and allow the feathers to behave as individual airfoils. Research suggests these emarginate feathers are an adaptation to increase glide efficiency by mitigating induced drag in a manner similar to aircraft winglets. If so, we might expect birds known for gliding and soaring to exhibit emarginate feather morphology; however, that is not always the case. Here, we explore emargination across the avian clade, and examine associations between emargination and ecological and morphological variables. Pelagic birds exhibit pointed, high-aspect ratio wings without slots, whereas soaring terrestrial birds exhibit prominent wing-tip slots. Thus, we formed four hypotheses: (1) Emargination is segregated according to habitat (terrestrial, coastal/freshwater, pelagic). (2) Emargination is positively correlated with mass. (3) Emargination varies inversely with aspect ratio and directly with wing loading and disc loading. (4) Emargination varies according to flight style, foraging style, and diet. We found that emargination falls along a continuum that varies with habitat: Pelagic species tend to have zero emargination, coastal/freshwater birds have some emargination, and terrestrial species have a high degree of emargination. Among terrestrial and coastal/freshwater species, the degree of emargination is positively correlated with mass. We infer this may be the result of selection to mitigate induced power requirements during slow flight that otherwise scale adversely with increasing body size. Since induced power output is greatest during slow flight, we hypothesize that emargination may be an adaptation to assist vertical take-off and landing rather than glide efficiency as previously hypothesized.
AB - Wing tip slots are a distinct morphological trait broadly expressed across the avian clade, but are generally perceived to be unique to soaring raptors. These slots are the result of emarginations on the distal leading and trailing edges of primary feathers, and allow the feathers to behave as individual airfoils. Research suggests these emarginate feathers are an adaptation to increase glide efficiency by mitigating induced drag in a manner similar to aircraft winglets. If so, we might expect birds known for gliding and soaring to exhibit emarginate feather morphology; however, that is not always the case. Here, we explore emargination across the avian clade, and examine associations between emargination and ecological and morphological variables. Pelagic birds exhibit pointed, high-aspect ratio wings without slots, whereas soaring terrestrial birds exhibit prominent wing-tip slots. Thus, we formed four hypotheses: (1) Emargination is segregated according to habitat (terrestrial, coastal/freshwater, pelagic). (2) Emargination is positively correlated with mass. (3) Emargination varies inversely with aspect ratio and directly with wing loading and disc loading. (4) Emargination varies according to flight style, foraging style, and diet. We found that emargination falls along a continuum that varies with habitat: Pelagic species tend to have zero emargination, coastal/freshwater birds have some emargination, and terrestrial species have a high degree of emargination. Among terrestrial and coastal/freshwater species, the degree of emargination is positively correlated with mass. We infer this may be the result of selection to mitigate induced power requirements during slow flight that otherwise scale adversely with increasing body size. Since induced power output is greatest during slow flight, we hypothesize that emargination may be an adaptation to assist vertical take-off and landing rather than glide efficiency as previously hypothesized.
KW - feather asymmetry
KW - notch
KW - slot
KW - wing
KW - winglet
UR - http://www.scopus.com/inward/record.url?scp=85019842241&partnerID=8YFLogxK
U2 - 10.1002/jmor.20686
DO - 10.1002/jmor.20686
M3 - Article
C2 - 28523646
AN - SCOPUS:85019842241
SN - 0362-2525
VL - 278
SP - 936
EP - 947
JO - Journal of Morphology
JF - Journal of Morphology
IS - 7
ER -