TY - JOUR
T1 - Predator-induced renesting and reproductive effort in indigo buntings
T2 - More work for less pay?
AU - Morris, Dana L.
AU - Faaborg, John
AU - Washburn, Brian E.
AU - Millspaugh, Joshua J.
N1 - Publisher Copyright:
© The Author 2015.
PY - 2015
Y1 - 2015
N2 - Renesting after nest predation is ultimately an adaptive response to increase productivity in birds. However, renesting also increases reproductive effort to replace lost clutches. We investigated the consequences of this increased reproductive effort by determining whether renesting in female indigo buntings (Passerina cyanea) is associated with a decline in body condition (size-corrected mass) and haematocrit and an increase in stress hormones and whether renesting or maternal body condition is associated with a decline in productivity (clutch size, nestling body condition). Next, because a consequence of multiple renesting attempts is a prolonged breeding season and later timing, we predicted that a population of post-breeding females and juveniles would have lower body condition in fragmented forest than in contiguous forest owing to higher nest predation and frequency of renesting. Both forest types were settled by females of similar condition. Nest survival was lower in fragmented forest, where a higher proportion of females failed their first attempt and the breeding season was 2 weeks longer. Compared with females on their first attempt, renesting females had lower body condition and haematocrit and higher corticosterone concentrations. Lower maternal body condition was associated with higher concentrations of corticosterone, lower nestling body condition and smaller clutches. Clutch size was lower in renests and in fragmented forest. Nestling condition was lower in renests but did not vary greatly with forest type. Despite a prolonged breeding season in the fragmented forest, post-breeding females and hatch-year birds were in similar condition in both forest types. Our results suggest that the indirect effects of nest predation on maternal and offspring condition pose additional individual-level costs that have not been considered in the context of fragmentation studies. We discuss how predator-induced renesting could have additional demographic consequences by prolonging the breeding season and prompting seasonal interactions or carry-over effects that could impact populations.
AB - Renesting after nest predation is ultimately an adaptive response to increase productivity in birds. However, renesting also increases reproductive effort to replace lost clutches. We investigated the consequences of this increased reproductive effort by determining whether renesting in female indigo buntings (Passerina cyanea) is associated with a decline in body condition (size-corrected mass) and haematocrit and an increase in stress hormones and whether renesting or maternal body condition is associated with a decline in productivity (clutch size, nestling body condition). Next, because a consequence of multiple renesting attempts is a prolonged breeding season and later timing, we predicted that a population of post-breeding females and juveniles would have lower body condition in fragmented forest than in contiguous forest owing to higher nest predation and frequency of renesting. Both forest types were settled by females of similar condition. Nest survival was lower in fragmented forest, where a higher proportion of females failed their first attempt and the breeding season was 2 weeks longer. Compared with females on their first attempt, renesting females had lower body condition and haematocrit and higher corticosterone concentrations. Lower maternal body condition was associated with higher concentrations of corticosterone, lower nestling body condition and smaller clutches. Clutch size was lower in renests and in fragmented forest. Nestling condition was lower in renests but did not vary greatly with forest type. Despite a prolonged breeding season in the fragmented forest, post-breeding females and hatch-year birds were in similar condition in both forest types. Our results suggest that the indirect effects of nest predation on maternal and offspring condition pose additional individual-level costs that have not been considered in the context of fragmentation studies. We discuss how predator-induced renesting could have additional demographic consequences by prolonging the breeding season and prompting seasonal interactions or carry-over effects that could impact populations.
KW - Avian breeding biology
KW - Corticosterone
KW - Forest fragmentation
KW - Nest success
KW - Post-breeding
KW - Renesting
UR - http://www.scopus.com/inward/record.url?scp=84983646574&partnerID=8YFLogxK
U2 - 10.1093/conphys/cou063
DO - 10.1093/conphys/cou063
M3 - Article
AN - SCOPUS:84983646574
SN - 2051-1434
VL - 3
JO - Conservation Physiology
JF - Conservation Physiology
IS - 1
ER -