TY - JOUR
T1 - Rain-on-snow events in Alaska, their frequency and distribution from satellite observations
AU - Pan, Caleb G.
AU - Kirchner, Peter B.
AU - Kimball, John S.
AU - Kim, Youngwook
AU - Du, Jinyang
N1 - Publisher Copyright:
© 2018 The Author(s). Published by IOP Publishing Ltd
PY - 2018/7/6
Y1 - 2018/7/6
N2 - Wet snow and the icing events that frequently follow wintertime rain-on-snow (ROS) affect high latitude ecosystems at multiple spatial and temporal scales, including hydrology, carbon cycle, wildlife, and human development. However, the distribution of ROS events and their response to climatic changes are uncertain. In this study, we quantified ROS spatiotemporal variability across Alaska during the cold season (November to March) and clarified the influence of precipitation and temperature variations on these patterns. A satellite-based daily ROS geospatial classification was derived for the region by combining remote sensing information from overlapping MODIS and AMSR sensor records. The ROS record extended over the recent satellite record (water years 2003-2011 and 2013-2016) and was derived at a daily time step and 6 km grid, benefiting from finer (500 m) resolution MODIS snow cover observations and coarser (12.5 km) AMSR microwave brightness temperature-based freeze-thaw retrievals. The classification showed favorable ROS detection accuracy (75%-100%) against in situ climate observations across Alaska. Pixel-wise correlation analysis was used to clarify relationships between the ROS patterns and underlying physiography and climatic influences. Our findings indicate that cold season ROS events are most common during autumn and spring months along the maritime Bering Sea coast and boreal interior regions, but are infrequent on the colder arctic North Slope. The frequency and extent of ROS events coincided with warm temperature anomalies (p < 0.1), but showed a generally weaker relationship with precipitation. The weaker precipitation relationship was attributed to several factors, including large uncertainty in cold season precipitation measurements, and the important contribution of humidity and turbulent energy transfer in driving snowmelt and icing events independent of rainfall. Our results suggest that as high latitude temperatures increase, wet snow and ROS events will also increase in frequency and extent, particularly in the southwestern and interior regions of Alaska.
AB - Wet snow and the icing events that frequently follow wintertime rain-on-snow (ROS) affect high latitude ecosystems at multiple spatial and temporal scales, including hydrology, carbon cycle, wildlife, and human development. However, the distribution of ROS events and their response to climatic changes are uncertain. In this study, we quantified ROS spatiotemporal variability across Alaska during the cold season (November to March) and clarified the influence of precipitation and temperature variations on these patterns. A satellite-based daily ROS geospatial classification was derived for the region by combining remote sensing information from overlapping MODIS and AMSR sensor records. The ROS record extended over the recent satellite record (water years 2003-2011 and 2013-2016) and was derived at a daily time step and 6 km grid, benefiting from finer (500 m) resolution MODIS snow cover observations and coarser (12.5 km) AMSR microwave brightness temperature-based freeze-thaw retrievals. The classification showed favorable ROS detection accuracy (75%-100%) against in situ climate observations across Alaska. Pixel-wise correlation analysis was used to clarify relationships between the ROS patterns and underlying physiography and climatic influences. Our findings indicate that cold season ROS events are most common during autumn and spring months along the maritime Bering Sea coast and boreal interior regions, but are infrequent on the colder arctic North Slope. The frequency and extent of ROS events coincided with warm temperature anomalies (p < 0.1), but showed a generally weaker relationship with precipitation. The weaker precipitation relationship was attributed to several factors, including large uncertainty in cold season precipitation measurements, and the important contribution of humidity and turbulent energy transfer in driving snowmelt and icing events independent of rainfall. Our results suggest that as high latitude temperatures increase, wet snow and ROS events will also increase in frequency and extent, particularly in the southwestern and interior regions of Alaska.
KW - AMSR
KW - Alaska
KW - Arctic boreal vulnerability experiment (ABoVE)
KW - Climate change
KW - Rain-on-snow
KW - Remote sensing
UR - http://www.scopus.com/inward/record.url?scp=85056547933&partnerID=8YFLogxK
U2 - 10.1088/1748-9326/aac9d3
DO - 10.1088/1748-9326/aac9d3
M3 - Article
AN - SCOPUS:85056547933
SN - 1748-9318
VL - 13
JO - Environmental Research Letters
JF - Environmental Research Letters
IS - 7
M1 - 075004
ER -