@inproceedings{0c1f427ad57c4999a601aad63dfa6640,
title = "Rapid Antibiotic Susceptibility Analysis Using Microscopy and Machine Learning",
abstract = "Here we present machine learning-based approach to automatic classify live and dead bacteria that can be used for rapid search for optimal antibiotics in case of bacterial infections. The patients must be promptly administered a most efficient medication because all delays significantly increase morbidity and mortality. We engineered a new technology allowing us to efficiently and rapidly capture bacterial cells from different biological samples and proceed with a rapid antibiotic susceptibility testing thereby bypassing the need to culture the bacterium. We developed a new machine learning and microscopy-based approach for rapid assessment of bacterial viability following tests with antibiotics. Also, we created a labeled dataset with 100 images of live and dead bacteria stained with DAPI (DNA; blue) and FM4-64 (membrane; red) either treated with an antibiotic or untreated. We analyzed wild type (WT) and ampicillin-resistant (ampR) E. coli, WT and ampR S. aureus, and B. subtilis. For antibiotic susceptibility testing we used ampicillin, chloramphenicol and erythromycin. We extracted information about red and blue channels from the images and tried two machine learning classifiers for rapid assessment of viability of the bacteria. The classifiers Random Forest and J48 Decision Tree demonstrated precision 90.7% and 96%, recall 94.4% and 100%, and F-measure 92.5% and 95.2%, correspondingly, on 10-fold cross-validation.",
keywords = "antibiotic susceptibility analysis, bacteria, machine learning",
author = "Anna Pyayt and Rituparna Khan and Robert Brzozowski and Prahathees Eswara and Michael Gubanov",
note = "Publisher Copyright: {\textcopyright} 2020 IEEE.; 8th IEEE International Conference on Big Data, Big Data 2020 ; Conference date: 10-12-2020 Through 13-12-2020",
year = "2020",
month = dec,
day = "10",
doi = "10.1109/BigData50022.2020.9378005",
language = "English",
series = "Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "5804--5806",
editor = "Xintao Wu and Chris Jermaine and Li Xiong and Hu, {Xiaohua Tony} and Olivera Kotevska and Siyuan Lu and Weijia Xu and Srinivas Aluru and Chengxiang Zhai and Eyhab Al-Masri and Zhiyuan Chen and Jeff Saltz",
booktitle = "Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020",
}