TY - JOUR
T1 - Role of resonance-enhanced multiphoton excitation in high-harmonic generation of N2
T2 - A time-dependent density-functional-theory study
AU - Chu, Xi
AU - Groenenboom, Gerrit C.
PY - 2013/1/31
Y1 - 2013/1/31
N2 - A minimum at ∼39 eV is observed in the high-harmonic-generation spectra of N2 for several laser intensities and frequencies. This minimum appears to be invariant for different molecular orientations. We reproduce this minimum for a set of laser parameters and orientations in time-dependent density-functional-theory calculations, which also render orientation-dependent maxima at 23-26 eV. Photon energies of these maxima overlap with ionization potentials of excited states observed in photoelectron spectra. Time profile analysis shows that these maxima are caused by resonance-enhanced multiphoton excitation. We propose a four-step mechanism, in which an additional excitation step is added to the well-accepted three-step model. Excitation to a linear combination of Rydberg states c4′1Σu+ and c3 1Πu gives rise to an orientation-invariant minimum analogous to the "Cooper minimum" in argon. When the molecular axis is parallel to the polarization direction of the field, a radial node goes through the atomic centers, and hence the Cooper-like minimum coincides with the minimum predicted by a modified two-center interference model that considers the de-excitation of the ion and symmetry of the Rydberg orbital.
AB - A minimum at ∼39 eV is observed in the high-harmonic-generation spectra of N2 for several laser intensities and frequencies. This minimum appears to be invariant for different molecular orientations. We reproduce this minimum for a set of laser parameters and orientations in time-dependent density-functional-theory calculations, which also render orientation-dependent maxima at 23-26 eV. Photon energies of these maxima overlap with ionization potentials of excited states observed in photoelectron spectra. Time profile analysis shows that these maxima are caused by resonance-enhanced multiphoton excitation. We propose a four-step mechanism, in which an additional excitation step is added to the well-accepted three-step model. Excitation to a linear combination of Rydberg states c4′1Σu+ and c3 1Πu gives rise to an orientation-invariant minimum analogous to the "Cooper minimum" in argon. When the molecular axis is parallel to the polarization direction of the field, a radial node goes through the atomic centers, and hence the Cooper-like minimum coincides with the minimum predicted by a modified two-center interference model that considers the de-excitation of the ion and symmetry of the Rydberg orbital.
UR - http://www.scopus.com/inward/record.url?scp=84873201503&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.87.013434
DO - 10.1103/PhysRevA.87.013434
M3 - Article
AN - SCOPUS:84873201503
SN - 1050-2947
VL - 87
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 1
M1 - 013434
ER -