TY - JOUR
T1 - Sediment, water column, and open-channel denitrification in rivers measured using membrane-inlet mass spectrometry
AU - Reisinger, Alexander J.
AU - Tank, Jennifer L.
AU - Hoellein, Timothy J.
AU - Hall, Robert O.
N1 - Publisher Copyright:
©2016. American Geophysical Union. All Rights Reserved.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Riverine biogeochemical processes are understudied relative to headwaters, and reach-scale processes in rivers reflect both the water column and sediment. Denitrification in streams is difficult to measure, and is often assumed to occur only in sediment, but the water column is potentially important in rivers. Dissolved nitrogen (N) gas flux (as dinitrogen (N2)) and open-channel N2 exchange methods avoid many of the artificial conditions and expenses of common denitrification methods like acetylene block and 15N-tracer techniques. We used membrane-inlet mass spectrometry and microcosm incubations to quantify net N2 and oxygen flux from the sediment and water column of five Midwestern rivers spanning a land use gradient. Sediment and water column denitrification ranged from below detection to 1.8 mg N m−2 h−1 and from below detection to 4.9 mg N m−2 h−1, respectively. Water column activity was variable across rivers, accounting for 0–85% of combined microcosm denitrification and 39–85% of combined microcosm respiration. Finally, we estimated reach-scale denitrification at one Midwestern river using a diel, open-channel N2 exchange approach based on reach-scale metabolism methods, providing an integrative estimate of riverine denitrification. Reach-scale denitrification was 8.8 mg N m−2 h−1 (95% credible interval: 7.8–9.7 mg N m−2 h−1), higher than combined sediment and water column microcosm estimates from the same river (4.3 mg N m−2 h−1) and other estimates of reach-scale denitrification from streams. Our denitrification estimates, which span habitats and spatial scales, suggest that rivers can remove N via denitrification at equivalent or higher rates than headwater streams.
AB - Riverine biogeochemical processes are understudied relative to headwaters, and reach-scale processes in rivers reflect both the water column and sediment. Denitrification in streams is difficult to measure, and is often assumed to occur only in sediment, but the water column is potentially important in rivers. Dissolved nitrogen (N) gas flux (as dinitrogen (N2)) and open-channel N2 exchange methods avoid many of the artificial conditions and expenses of common denitrification methods like acetylene block and 15N-tracer techniques. We used membrane-inlet mass spectrometry and microcosm incubations to quantify net N2 and oxygen flux from the sediment and water column of five Midwestern rivers spanning a land use gradient. Sediment and water column denitrification ranged from below detection to 1.8 mg N m−2 h−1 and from below detection to 4.9 mg N m−2 h−1, respectively. Water column activity was variable across rivers, accounting for 0–85% of combined microcosm denitrification and 39–85% of combined microcosm respiration. Finally, we estimated reach-scale denitrification at one Midwestern river using a diel, open-channel N2 exchange approach based on reach-scale metabolism methods, providing an integrative estimate of riverine denitrification. Reach-scale denitrification was 8.8 mg N m−2 h−1 (95% credible interval: 7.8–9.7 mg N m−2 h−1), higher than combined sediment and water column microcosm estimates from the same river (4.3 mg N m−2 h−1) and other estimates of reach-scale denitrification from streams. Our denitrification estimates, which span habitats and spatial scales, suggest that rivers can remove N via denitrification at equivalent or higher rates than headwater streams.
KW - Bayesian MCMC model
KW - MIMS
KW - N2 flux
KW - denitrification
KW - nitrogen
KW - reach scale
UR - http://www.scopus.com/inward/record.url?scp=84969750852&partnerID=8YFLogxK
U2 - 10.1002/2015JG003261
DO - 10.1002/2015JG003261
M3 - Article
AN - SCOPUS:84969750852
SN - 2169-8953
VL - 121
SP - 1258
EP - 1274
JO - Journal of Geophysical Research: Biogeosciences
JF - Journal of Geophysical Research: Biogeosciences
IS - 5
ER -