Abstract
The contribution of cold-season soil respiration to the Arctic-boreal carbon cycle and its potential feedback to the global climate remain poorly quantified, partly due to a poor understanding of changes in the soil thermal regime and liquid water content during the soil-freezing process. Here, we characterized the processes controlling active-layer freezing in Arctic Alaska using an integrated approach combining in situ soil measurements, local-scale (~50m) longwave radar retrievals from NASA airborne P-band polarimetric SAR (PolSAR) and a remote-sensing-driven permafrost model. To better capture landscape variability in snow cover and its influence on the soil thermal regime, we downscaled global coarse-resolution (0.5°) MERRA-2 reanalysis snow depth data using finer-scale (500 m) MODIS snow cover extent (SCE) observations. The downscaled 1 km snow depth data were used as key inputs to the permafrost model, capturing finer-scale variability associated with local topography and with favorable accuracy relative to the SNOTEL site measurements in Arctic Alaska (mean RMSE = 0.16m, bias =-m). In situ tundra soil dielectric constant (ϵ) profile measurements were used for model parameterization of the soil organic layer and unfrozen-water content curve. The resulting model-simulated mean zero-curtain period was generally consistent with in situ observations spanning a 2° latitudinal transect along the Alaska North Slope (R: 0.6±0.2; RMSE: 19±6 days), with an estimated mean zero-curtain period ranging from 61±11 to 73±15 days at 0.25 to 0.45 m depths. Along the same transect, both the observed and model-simulated zero-curtain periods were positively correlated (R 0.55, p 0.01) with a MODIS-derived snow cover fraction (SCF) from September to October. We also examined the airborne P-band radar-retrieved μ profile along this transect in 2014 and 2015, which is sensitive to near-surface soil liquid water content and freeze-thaw status. The μ difference in radar retrievals for the surface (~>0.1 m) soil between late August and early October was negatively correlated with SCF in September (R=0.77, p 0.01); areas with lower SCF generally showed larger μ reductions, indicating earlier surface soil freezing. On regional scales, the simulated zero curtain in the upper ( 0.4m) soils showed large variability and was closely associated with variations in early cold-season snow cover. Areas with earlier snow onset generally showed a longer zero-curtain period; however, the soil freeze onset and zero-curtain period in deeper ( 0.5m) soils were more closely linked to maximum thaw depth. Our findings indicate that a deepening active layer associated with climate warming will lead to persistent unfrozen conditions in deeper soils, promoting greater cold-season soil carbon loss.
Original language | English |
---|---|
Pages (from-to) | 197-218 |
Number of pages | 22 |
Journal | Cryosphere |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Jan 23 2019 |
Funding
Acknowledgements. Funding for this study was provided by NASA (NNX15AT74A, NNX14AO23G). The authors thank Vladimir Ro-manovsky’s group for providing the GTN-P soil temperature data in Alaska. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.
Funders | Funder number |
---|---|
National Aeronautics and Space Administration | NNX14AO23G, NNX15AT74A |