TY - JOUR
T1 - Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages
AU - Iyer, Rashi
AU - Hamilton, Raymond F.
AU - Li, Li
AU - Holian, Andrij
N1 - Funding Information:
This work was supported by NIH Grant HL-04804 (AH) and by NIH Clinical Research Center Grant M01-RR-02558.
PY - 1996/11
Y1 - 1996/11
N2 - Exposure to silica dust can result in lung inflammation that may progress to fibrosis, for which there is no effective clinical treatment. The mechanisms involved in the development of pulmonary silicosis have not been well defined; however, most current evidence implicates a central role for alveolar macrophages (AM) in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in AM. In this study, human AM were treated with fibrogenic, poorly fibrogenic, and nonfibrogenic model particulates, such as silica (133 μg/ml), amorphous silica (80 μg/ml), and titanium dioxide (60 μg/ml), respectively. Cells were treated with these particulates in vitro for 6 and 24 hr and examined for apoptosis by morphological analysis, DNA fragmentation, and levels of cytosolic histone-bound DNA fragments (cell death ELISA assays). Treatment with silica resulted in morphological changes typical of apoptotic cells, enhanced DNA fragmentation (a characteristic feature of programmed cell death), and significant alveolar macrophage apoptosis as observed by cell death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitor, polyinosinic acid (poly(I), 500 μg/ml), for 10 min prior to silica treatment. Pretreatment with poly(I) resulted in complete inhibition of silica-induced apoptosis as measured by cell death ELISA. Further, we examined the involvement of interleukin-converting enzyme (ICE) in silica-mediated apoptosis using an ICE inhibitor, Z-Val-Ala-Asp-fluoromethyl ketone. Z-Val-Ala-Asp-fluoromethyl ketone inhibited silica-induced apoptosis and IL-1β release. These results suggest that fibrogenic particulates, such as silica, caused apoptosis of alveolar macrophages and that this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis. Additionally, silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, initiating one or a number of signaling pathways involving ICE, ultimately leading to apoptosis.
AB - Exposure to silica dust can result in lung inflammation that may progress to fibrosis, for which there is no effective clinical treatment. The mechanisms involved in the development of pulmonary silicosis have not been well defined; however, most current evidence implicates a central role for alveolar macrophages (AM) in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in AM. In this study, human AM were treated with fibrogenic, poorly fibrogenic, and nonfibrogenic model particulates, such as silica (133 μg/ml), amorphous silica (80 μg/ml), and titanium dioxide (60 μg/ml), respectively. Cells were treated with these particulates in vitro for 6 and 24 hr and examined for apoptosis by morphological analysis, DNA fragmentation, and levels of cytosolic histone-bound DNA fragments (cell death ELISA assays). Treatment with silica resulted in morphological changes typical of apoptotic cells, enhanced DNA fragmentation (a characteristic feature of programmed cell death), and significant alveolar macrophage apoptosis as observed by cell death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitor, polyinosinic acid (poly(I), 500 μg/ml), for 10 min prior to silica treatment. Pretreatment with poly(I) resulted in complete inhibition of silica-induced apoptosis as measured by cell death ELISA. Further, we examined the involvement of interleukin-converting enzyme (ICE) in silica-mediated apoptosis using an ICE inhibitor, Z-Val-Ala-Asp-fluoromethyl ketone. Z-Val-Ala-Asp-fluoromethyl ketone inhibited silica-induced apoptosis and IL-1β release. These results suggest that fibrogenic particulates, such as silica, caused apoptosis of alveolar macrophages and that this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis. Additionally, silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, initiating one or a number of signaling pathways involving ICE, ultimately leading to apoptosis.
UR - http://www.scopus.com/inward/record.url?scp=0030296848&partnerID=8YFLogxK
U2 - 10.1006/taap.1996.0263
DO - 10.1006/taap.1996.0263
M3 - Article
C2 - 8917679
AN - SCOPUS:0030296848
SN - 0041-008X
VL - 141
SP - 84
EP - 92
JO - Toxicology and Applied Pharmacology
JF - Toxicology and Applied Pharmacology
IS - 1
ER -