Simulation modelling in landscape genetics: On the need to go further

Niko Balkenhol, Erin L. Landguth

Research output: Contribution to journalReview articlepeer-review

36 Scopus citations

Abstract

With the emergence of landscape genetics, the basic assumptions and predictions of classical population genetic theories are being re-evaluated to account for more complex spatial and temporal dynamics. Within the last decade, there has been an exponential increase in such landscape genetic studies (Holderegger & Wagner 2006; Storfer 2010), and both methodology and underlying concepts of the field are under rapid and constant development. A number of major innovations and a high level of originality are required to fully merge existing population genetic theory with landscape ecology and to develop novel statistical approaches for measuring and predicting genetic patterns. The importance of simulation studies for this specific research has been emphasized in a number of recent articles (e.g., Balkenhol 2009a; Epperson 2010). Indeed, many of the major questions in landscape genetics require the development and application of sophisticated simulation tools to explore gene flow, genetic drift, mutation and natural selection in landscapes with a wide range of spatial and temporal complexities. In this issue, Jaquiéry (2011) provide an excellent example of such a simulation study for landscape genetics. Using a metapopulation simulation design and a novel 'scale of phenomena' approach, Jaquiéry (2011) demonstrate the utility and limitations of genetic distances for inferring landscape effects on effective dispersal.

Original languageEnglish
Pages (from-to)667-670
Number of pages4
JournalMolecular Ecology
Volume20
Issue number4
DOIs
StatePublished - Feb 2011

Keywords

  • computer simulations
  • dispersal
  • gene flow
  • spatial analysis

Fingerprint

Dive into the research topics of 'Simulation modelling in landscape genetics: On the need to go further'. Together they form a unique fingerprint.

Cite this