Singularly perturbed periodic parabolic equations with alternating boundary layer type solutions in spatially two-dimensional domains

Adelaida B. Vasil'Eva, Leonid V. Kalachev

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, we continue the analysis of a class of singularly perturbed parabolic equations with alternating boundary layer type solutions. For such problems, the degenerate (reduced) equations obtained by setting a small parameter equal to zero correspond to algebraic equations that have several isolated roots. As time increases, solutions of these equations periodically go through two comparatively long lasting stages with fast transitions between these stages. During one of these stages, the solution outside the boundary layer (i.e. The regular part of the asymptotic solution) is close to one of the roots of the degenerate equation. During the other stage, the regular part of the asymptotic solution is close to the other root. Here we discuss some specific features of the solutions' behavior for such problems in certain two-dimensional spatial domains.

Original languageEnglish
Article number1350029
JournalAnalysis and Applications
Volume11
Issue number5
DOIs
StatePublished - Sep 2013

Keywords

  • Boundary function method
  • Parabolic equations
  • Singular perturbations
  • Two-dimensional spatial domains

Fingerprint

Dive into the research topics of 'Singularly perturbed periodic parabolic equations with alternating boundary layer type solutions in spatially two-dimensional domains'. Together they form a unique fingerprint.

Cite this