TY - JOUR
T1 - Size matters
T2 - Sample size assessments for chronic wasting disease surveillance using an agent-based modeling framework
AU - Belsare, Aniruddha
AU - Gompper, Matthew
AU - Keller, Barbara
AU - Sumners, Jason
AU - Hansen, Lonnie
AU - Millspaugh, Joshua
N1 - Publisher Copyright:
© 2020
PY - 2020
Y1 - 2020
N2 - Epidemiological surveillance for many important wildlife diseases relies on samples obtained from hunter-harvested animals. Statistical methods used to calculate sample size requirements assume that the target population is randomly sampled, and therefore the samples are representative of the population. But hunter-harvested samples may not be representative of the population due to disease distribution heterogeneities (e.g. spatial clustering of infected individuals), and harvest-related non-random processes like regulations, hunter selectivity, variable land access, and uneven hunter distribution. Consequently, sample sizes necessary for detection of disease are underestimated and disease detection probabilities are overestimated, resulting in erroneous inferences about disease presence and distribution. We have developed a modeling framework to support the design of efficient disease surveillance programs for wildlife populations. The constituent agent-based models can incorporate real-world heterogeneities associated with disease distribution, harvest, and harvest-based sampling, and can be used to determine population-specific sample sizes necessary for prompt detection of important wildlife diseases like chronic wasting disease and bovine tuberculosis. The modeling framework and its application has been described in detail by Belsare et al. [1]. Here we describe how model scenarios were developed and implemented, and how model outputs were analyzed. The main objectives of this methods paper are to provide users the opportunity to a) assess the reproducibility of the published model results, b) gain an in-depth understanding of model analysis, and c) facilitate adaptation of this modeling framework to other regions and other wildlife disease systems. • The two agent-based models, MOOvPOP and MOOvPOPsurveillance, incorporate real-world heterogeneities underpinned by host characteristics, disease spread dynamics, and sampling biases in hunter-harvested deer. • The modeling framework facilitates iterative analysis of locally relevant disease surveillance scenarios, thereby facilitating sample size calculations for prompt and reliable detection of important wildlife diseases. • Insights gained from modeling studies can be used to inform the design of effective wildlife disease surveillance strategies.
AB - Epidemiological surveillance for many important wildlife diseases relies on samples obtained from hunter-harvested animals. Statistical methods used to calculate sample size requirements assume that the target population is randomly sampled, and therefore the samples are representative of the population. But hunter-harvested samples may not be representative of the population due to disease distribution heterogeneities (e.g. spatial clustering of infected individuals), and harvest-related non-random processes like regulations, hunter selectivity, variable land access, and uneven hunter distribution. Consequently, sample sizes necessary for detection of disease are underestimated and disease detection probabilities are overestimated, resulting in erroneous inferences about disease presence and distribution. We have developed a modeling framework to support the design of efficient disease surveillance programs for wildlife populations. The constituent agent-based models can incorporate real-world heterogeneities associated with disease distribution, harvest, and harvest-based sampling, and can be used to determine population-specific sample sizes necessary for prompt detection of important wildlife diseases like chronic wasting disease and bovine tuberculosis. The modeling framework and its application has been described in detail by Belsare et al. [1]. Here we describe how model scenarios were developed and implemented, and how model outputs were analyzed. The main objectives of this methods paper are to provide users the opportunity to a) assess the reproducibility of the published model results, b) gain an in-depth understanding of model analysis, and c) facilitate adaptation of this modeling framework to other regions and other wildlife disease systems. • The two agent-based models, MOOvPOP and MOOvPOPsurveillance, incorporate real-world heterogeneities underpinned by host characteristics, disease spread dynamics, and sampling biases in hunter-harvested deer. • The modeling framework facilitates iterative analysis of locally relevant disease surveillance scenarios, thereby facilitating sample size calculations for prompt and reliable detection of important wildlife diseases. • Insights gained from modeling studies can be used to inform the design of effective wildlife disease surveillance strategies.
KW - Agent-based modeling
KW - Harvest-based surveillance
KW - Iterative analysis using an agent-based modeling framework
KW - Iterative model analysis
KW - NetLogo
UR - http://www.scopus.com/inward/record.url?scp=85086652216&partnerID=8YFLogxK
U2 - 10.1016/j.mex.2020.100953
DO - 10.1016/j.mex.2020.100953
M3 - Article
AN - SCOPUS:85086652216
SN - 2215-0161
VL - 7
JO - MethodsX
JF - MethodsX
M1 - 100953
ER -