Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils

Alan R. Townsend, Peter M. Vitousek, David J. Desmarais, Anne Tharpe

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

We measured respiration and δ13C values of respired and soil carbon in long-term incubations of soils from two forests and three pastures along an altitudinal gradient in Hawaii. CO2 fluxes early in the incubations decreased rapidly, and then stabilized at approximately 20% of initial values for seven months. We suggest that the rapid drop and subsequent stabilization of respiration reflects a change in the dominant source of the CO2 from labile (active) to much more recalcitrant pools of soil organic matter (SOM). Estimates of active SOM were made by integrating all of the carbon respired in excess of that attributable to respiration of the intermediate SOM pool; these values ranged from 0.7-4.3% of total soil C. δ13C values for carbon respired from the pasture soils showed that older, forest-derived C contributed an increasing fraction of total soil respiration with time. Initial and late-stage respiration responded similarly to changes in temperature, suggesting that intermediate SOM is as sensitive to temperature as the active fraction.

Original languageEnglish
Pages (from-to)1-17
Number of pages17
JournalBiogeochemistry
Volume38
Issue number1
DOIs
StatePublished - 1997

Keywords

  • Atmospheric CO
  • Carbon-13
  • Decomposition
  • Hawaii
  • Soil incubations
  • Soil organic matter
  • Soil respiration

Fingerprint

Dive into the research topics of 'Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils'. Together they form a unique fingerprint.

Cite this