Abstract
Utilizing an induced-fit model and taking advantage of rotatable acetylenic C(sp)-C(sp2) bonds, we disclose the synthesis and solid-state structures of a series of conformationally diverse bis-sulfonamide arylethynyl receptors using either pyridine, 2,2′-bipyridine, or thiophene as the core aryl group. Whereas the bipyridine and thiophene structures do not appear to bind guests in the solid state, the pyridine receptors form 2 + 2 dimers with water molecules, two halides, or one of each, depending on the protonation state of the pyridine nitrogen atom. Isolation of a related bis-sulfonimide derivative demonstrates the importance of the sulfonamide N-H hydrogen bonds in dimer formation. The pyridine receptors form monomeric structures with larger guests such as BF4- or HSO4-, where the sulfonamide arms rotate to the side opposite the pyridine N atom.
| Original language | English |
|---|---|
| Pages (from-to) | 1502-1511 |
| Number of pages | 10 |
| Journal | Crystal Growth and Design |
| Volume | 15 |
| Issue number | 3 |
| DOIs | |
| State | Published - Mar 4 2015 |