Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity

Amy M. Novotny, John D. Schade, Sarah E. Hobbie, Adam D. Kay, Marcia Kyle, Peter B. Reich, James J. Elser

Research output: Contribution to journalArticlepeer-review

66 Scopus citations


Human activities have resulted in increased nitrogen deposition and atmospheric CO2 concentrations in the biosphere, potentially causing significant changes in many ecological processes. In addition to these ongoing perturbations of the abiotic environment, human-induced losses of biodiversity are also of major concern and may interact in important ways with biogeochemical perturbations to affect ecosystem structure and function. We have evaluated the effects of these perturbations on plant biomass stoichiometric composition (C:N:P ratios) within the framework of the BioCON experimental setup (biodiversity, CO2, N) conducted at the Cedar Creek Natural History Area, Minnesota. Here we present data for five plant species: Solidago rigida, Achillea millefolium, Amorpha canescens, Lespedeza capitata, and Lupinus perennis. We found significantly higher C:N and C:P ratios under elevated CO2 treatments, but species responded idiosyncratically to the treatment. Nitrogen addition decreased C:N ratios, but this response was greater in the ambient CO2 treatments than under elevated CO2. Higher plant species diversity generally lowered both C:N and C:P ratios. Importantly, increased diversity also led to a more modest increase in the C:N ratio with elevated CO2 levels. In addition, legumes exhibited lower C:N and higher C:P and N:P ratios than non-legumes, highlighting the effect of physiological characteristics defining plant functional types. These data suggest that atmospheric CO2 levels, N availability, and plant species diversity interact to affect both aboveground and belowground processes by altering plant elemental composition.

Original languageEnglish
Pages (from-to)687-696
Number of pages10
Issue number4
StatePublished - Apr 2007


  • BioCON
  • Ecological stoichiometry
  • Elevated CO
  • Nitrogen enrichment
  • Species richness


Dive into the research topics of 'Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity'. Together they form a unique fingerprint.

Cite this