TY - CHAP
T1 - Structure and function of the NMDA receptor
AU - Yuan, Hongjie
AU - Geballe, Matthew T.
AU - Hansen, Kasper B.
AU - Traynelis, Stephen F.
PY - 2008
Y1 - 2008
N2 - Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. Based on their structural and pharmacological properties, ionotropic glutamate receptors can be divided into three groups, which include ?-amino-3-hydroxy-5-methyl-4- isoxasolepropionic acid (AMPA) receptors, kainate receptors, and N-methyl-D-aspartate (NMDA) receptors. Historically, these groups were named on the basis of the activating agonist. AMPA and kainate receptors are discussed in the chapter by Mayer. NMDA receptors are distinguished from other ionotropic glutamate receptors by their unique features including requirement for simultaneous binding of the co-agonists glycine and glutamate, voltage-dependent Mg2+ block, and high permeability to Ca2+. NMDA receptors contribute to the slow component of the excitatory postsynaptic current (EPSC) and play key roles in neuronal development, synaptic plasticity, learning, and memory, as well as in a number of pathophysiological conditions including epilepsy, stroke, neurodegenerative diseases (e.g. Parkinson's disease, Huntington's disease and Alzheimer's disease), and psychiatric disorders (e.g. schizophrenia). Therefore, understanding the relationship between structure and function of the NMDA receptor will provide valuable insights into the mechanisms of synaptic transmission, as well as pathophysiology of a number of disorders in the central nervous system. Understanding this relationship will also facilitate the development of therapeutically useful compounds.
AB - Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. Based on their structural and pharmacological properties, ionotropic glutamate receptors can be divided into three groups, which include ?-amino-3-hydroxy-5-methyl-4- isoxasolepropionic acid (AMPA) receptors, kainate receptors, and N-methyl-D-aspartate (NMDA) receptors. Historically, these groups were named on the basis of the activating agonist. AMPA and kainate receptors are discussed in the chapter by Mayer. NMDA receptors are distinguished from other ionotropic glutamate receptors by their unique features including requirement for simultaneous binding of the co-agonists glycine and glutamate, voltage-dependent Mg2+ block, and high permeability to Ca2+. NMDA receptors contribute to the slow component of the excitatory postsynaptic current (EPSC) and play key roles in neuronal development, synaptic plasticity, learning, and memory, as well as in a number of pathophysiological conditions including epilepsy, stroke, neurodegenerative diseases (e.g. Parkinson's disease, Huntington's disease and Alzheimer's disease), and psychiatric disorders (e.g. schizophrenia). Therefore, understanding the relationship between structure and function of the NMDA receptor will provide valuable insights into the mechanisms of synaptic transmission, as well as pathophysiology of a number of disorders in the central nervous system. Understanding this relationship will also facilitate the development of therapeutically useful compounds.
UR - http://www.scopus.com/inward/record.url?scp=84880315250&partnerID=8YFLogxK
U2 - 10.1007/978-0-387-77232-5_11
DO - 10.1007/978-0-387-77232-5_11
M3 - Chapter
AN - SCOPUS:84880315250
SN - 9780387772318
SP - 289
EP - 316
BT - Structural And Functional Organization Of The Synapse
PB - Springer US
ER -