Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis

Charles L. Dumke, J. Mark Davis, E. Angela Murphy, David C. Nieman, Martin D. Carmichael, John C. Quindry, N. Travis Triplett, Alan C. Utter, Sarah J. Gross Gowin, Dru A. Henson, Steven R. McAnulty, Lisa S. McAnulty

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Exercise increases mRNA for genes involved in mitochondrial biogenesis and oxidative enzyme capacity. However, little is known about how these genes respond to consecutive bouts of prolonged exercise. We examined the effects of 3 h of intensive cycling performed on three consecutive days on the mRNA associated with mitochondrial biogenesis in trained human subjects. Forty trained cyclists were tested for VO2max (54.7 ± 1.1 ml kg-1 min-1). The subjects cycled at 57% wattsmax for 3 h using their own bicycles on CompuTrainer™ Pro Model trainers (RacerMate, Seattle, WA) on three consecutive days. Muscle biopsies were obtained from the vastus lateralis pre- and post-exercise on days one and three. Muscle samples were analyzed for mRNA content of peroxisome proliferator receptor gamma coactivator-1 alpha (PGC-1α), sirtuin 1 (Sirt-1), cytochrome c, and citrate synthase. Data were analyzed using a 2 (time) × 2 (day) repeated measures ANOVA. Of the mRNA analyzed, the following increased from pre to post 3 h rides: cytochrome c (P = 0.006), citrate synthase (P = 0.03), PGC-1α (P < 0.001), and Sirt-1 (P = 0.005). The following mRNA showed significant effects from days one to three: cytochrome c (P < 0.001) and citrate synthase (P = 0.01). These data show that exhaustive cycling performed on three consecutive days resulted in both acute and chronic stimuli for mRNA associated with mitochondrial biogenesis in already trained subjects. This is the first study to illustrate an increase in sirtuin-1 mRNA with acute and chronic exercise. These data contribute to the understanding of mRNA expression during both acute and successive bouts of prolonged exercise.

Original languageEnglish
Pages (from-to)419-427
Number of pages9
JournalEuropean Journal of Applied Physiology
Volume107
Issue number4
DOIs
StatePublished - 2009

Keywords

  • Cycling economy
  • Endurance exercise
  • Mitochondrial density
  • Oxidative enzymes

Fingerprint

Dive into the research topics of 'Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis'. Together they form a unique fingerprint.

Cite this