Abstract
Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.
Original language | English |
---|---|
Article number | e2202268119 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 119 |
Issue number | 30 |
DOIs | |
State | Published - Jul 26 2022 |
Keywords
- ecosystem
- limnology
- nitrogen
- phosphorus
- stoichiometry
Fingerprint
Dive into the research topics of 'Sustained stoichiometric imbalance and its ecological consequences in a large oligotrophic lake'. Together they form a unique fingerprint.Press/Media
-
Researchers find nutrient imbalance in Flathead Lake
07/12/22 → 07/13/22
2 items of Media coverage
Press/Media