TY - JOUR
T1 - (TAML)FeIV=O complex in aqueous solution
T2 - Synthesis and spectroscopic and computational characterization
AU - Chanda, Arani
AU - Shan, Xiaopeng
AU - Chakrabarti, Mrinmoy
AU - Ellis, W. Chadwick
AU - Popescu, Delia L.
AU - De Oliveira, Filipe Tiago
AU - Wang, Dong
AU - Que, Lawrence
AU - Collins, Terrence J.
AU - Münck, Eckard
AU - Bominaar, Emile L.
PY - 2008/5/5
Y1 - 2008/5/5
N2 - Recently, we reported the characterization of the S = 1/2 complex [Fe V(O)B*]-, where B* belongs to a family of tetraamido macrocyclic ligands (TAMLs) whose iron complexes activate peroxides for environmentally useful applications. The corresponding one-electron reduced species, [FeIV(O)B*]2- (2), has now been prepared in >95% yield in aqueous solution at pH > 12 by oxidation of [Fe III(H2O)B*]- (1), with tert-butyl hydroperoxide. At room temperature, the monomeric species 2 is in a reversible, pH-dependent equilibrium with dimeric species [B*FeIV-O-Fe IVB*]2- (3), with a pKa near 10. In zero field, the Mössbauer spectrum of 2 exhibits a quadrupole doublet with ΔEQ = 3.95(3) mm/s and δ = -0.19(2) mm/s, parameters consistent with a S = 1 FeIV state. Studies in applied magnetic fields yielded the zero-field splitting parameter D = 24(3) cm-1 together with the magnetic hyperfine tensor A/gnβn = (-27, -27, +2) T. Fe K-edge EXAFS analysis of 2 shows a scatterer at 1.69 (2) Å, a distance consistent with a FeIV=O bond. DFT calculations for [FeIV(O)B*]2- reproduce the experimental data quite well. Further significant improvement was achieved by introducing hydrogen bonding of the axial oxygen with two solvent-water molecules. It is shown, using DFT, that the 57Fe hyperfine parameters of complex 2 give evidence for strong electron donation from B* to iron.
AB - Recently, we reported the characterization of the S = 1/2 complex [Fe V(O)B*]-, where B* belongs to a family of tetraamido macrocyclic ligands (TAMLs) whose iron complexes activate peroxides for environmentally useful applications. The corresponding one-electron reduced species, [FeIV(O)B*]2- (2), has now been prepared in >95% yield in aqueous solution at pH > 12 by oxidation of [Fe III(H2O)B*]- (1), with tert-butyl hydroperoxide. At room temperature, the monomeric species 2 is in a reversible, pH-dependent equilibrium with dimeric species [B*FeIV-O-Fe IVB*]2- (3), with a pKa near 10. In zero field, the Mössbauer spectrum of 2 exhibits a quadrupole doublet with ΔEQ = 3.95(3) mm/s and δ = -0.19(2) mm/s, parameters consistent with a S = 1 FeIV state. Studies in applied magnetic fields yielded the zero-field splitting parameter D = 24(3) cm-1 together with the magnetic hyperfine tensor A/gnβn = (-27, -27, +2) T. Fe K-edge EXAFS analysis of 2 shows a scatterer at 1.69 (2) Å, a distance consistent with a FeIV=O bond. DFT calculations for [FeIV(O)B*]2- reproduce the experimental data quite well. Further significant improvement was achieved by introducing hydrogen bonding of the axial oxygen with two solvent-water molecules. It is shown, using DFT, that the 57Fe hyperfine parameters of complex 2 give evidence for strong electron donation from B* to iron.
UR - http://www.scopus.com/inward/record.url?scp=44149085893&partnerID=8YFLogxK
U2 - 10.1021/ic7022902
DO - 10.1021/ic7022902
M3 - Article
C2 - 18380453
AN - SCOPUS:44149085893
SN - 0020-1669
VL - 47
SP - 3669
EP - 3678
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 9
ER -