TY - JOUR
T1 - The acute effects of exercise and temperature on regional mtDNA
AU - McGlynn, Mark L.
AU - Schnitzler, Halee
AU - Shute, Robert
AU - Ruby, Brent
AU - Slivka, Dustin
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6/2
Y1 - 2021/6/2
N2 - A reduced mitochondrial DNA (mtDNA) copy number, the ratio of mitochondrial DNA to genomic DNA (mtDNA:gDNA), has been linked with dysfunctional mitochondria. Exercise can acutely induce mtDNA damage manifested as a reduced copy number. However, the influence of a paired (exercise and temperature) intervention on regional mtDNA (MINor Arc and MAJor Arc) are unknown. Thus, the purpose of this study was to determine the acute effects of exercise in cold (7◦C), room temperature (20◦C), and hot (33◦C) ambient temperatures, on regional mitochondrial copy number (MINcn and MAJcn). Thirty-four participants (24.4 ± 5.1 yrs, 87.1 ± 22.1 kg, 22.3 ± 8.5 %BF, and 3.20 ± 0.59 L·min−1 VO2peak) cycled for 1 h (261.1 ± 22.1 W) in either 7◦C, 20◦C, or 33◦C ambient conditions. Muscle biopsy samples were collected from the vastus lateralis to determine mtDNA regional copy numbers via RT-qPCR. mtDNA is sensitive to the stressors of exercise post-exercise (MIN fold change, −1.50 ± 0.11; MAJ fold change, −1.70 ± 0.12) and 4-h post-exercise (MIN fold change, −0.82 ± 0.13; MAJ fold change, −1.54 ± 0.11). The MAJ Arc seems to be more sensitive to heat, showing a temperature-trend (p = 0.056) for a reduced regional copy number ratio after exercise in the heat (fold change −2.81 ± 0.11; p = 0.019). These results expand upon our current knowledge of the influence of temperature and exercise on the acute remodeling of regional mtDNA.
AB - A reduced mitochondrial DNA (mtDNA) copy number, the ratio of mitochondrial DNA to genomic DNA (mtDNA:gDNA), has been linked with dysfunctional mitochondria. Exercise can acutely induce mtDNA damage manifested as a reduced copy number. However, the influence of a paired (exercise and temperature) intervention on regional mtDNA (MINor Arc and MAJor Arc) are unknown. Thus, the purpose of this study was to determine the acute effects of exercise in cold (7◦C), room temperature (20◦C), and hot (33◦C) ambient temperatures, on regional mitochondrial copy number (MINcn and MAJcn). Thirty-four participants (24.4 ± 5.1 yrs, 87.1 ± 22.1 kg, 22.3 ± 8.5 %BF, and 3.20 ± 0.59 L·min−1 VO2peak) cycled for 1 h (261.1 ± 22.1 W) in either 7◦C, 20◦C, or 33◦C ambient conditions. Muscle biopsy samples were collected from the vastus lateralis to determine mtDNA regional copy numbers via RT-qPCR. mtDNA is sensitive to the stressors of exercise post-exercise (MIN fold change, −1.50 ± 0.11; MAJ fold change, −1.70 ± 0.12) and 4-h post-exercise (MIN fold change, −0.82 ± 0.13; MAJ fold change, −1.54 ± 0.11). The MAJ Arc seems to be more sensitive to heat, showing a temperature-trend (p = 0.056) for a reduced regional copy number ratio after exercise in the heat (fold change −2.81 ± 0.11; p = 0.019). These results expand upon our current knowledge of the influence of temperature and exercise on the acute remodeling of regional mtDNA.
KW - Ambient temperature
KW - Copy number
KW - Exercise
KW - Mitochondria
KW - MtDNA
KW - Thermoregulation
UR - http://www.scopus.com/inward/record.url?scp=85107615858&partnerID=8YFLogxK
U2 - 10.3390/ijerph18126382
DO - 10.3390/ijerph18126382
M3 - Article
C2 - 34204828
AN - SCOPUS:85107615858
SN - 1661-7827
VL - 18
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 12
M1 - 6382
ER -