TY - GEN
T1 - The aerodynamics of hummingbird flight
AU - Warrick, Douglas R.
AU - Tobalske, Bret W.
AU - Powers, Donald R.
AU - Dickinson, Michael H.
PY - 2007/1/8
Y1 - 2007/1/8
N2 - Hummingbirds fly with their wings almost fully extended during their entire wingbeat. This pattern, associated with having proportionally short humeral bones, long distal wing elements, and assumed to be an adaptation for extended hovering flight, has lead to predictions that the aerodynamic mechanisms exploited by hummingbirds during hovering should be similar to those observed in insects. To test these predictions, we flew rufous hummingbirds (Selasphorus rufus, 3.3 g, n = 6) in a variable-speed wind tunnel (0-12 ms-1 and measured wake structure and dynamics using digital particle image velocimetry (DPIV). Unlike hovering insects, hummingbirds produced 75% of their weight support during downstroke and only 25% during upstroke, an asymmetry due to the inversion of their cambered wings during upstroke. Further, we have found no evidence of sustained, attached leading edge vorticity (LEV) during up or downstroke, as has been seen in similarly-sized insects - although a transient LEV is produced during the rapid change in angle of attack at the end of the downstroke. Finally, although an extended-wing upstroke during forward flight has long been thought to produce lift and negative thrust, we found circulation during downstroke alone to be sufficient to support body weight, and that some positive thrust was produced during upstroke, as evidenced by a vortex pair shed into the wake of all upstrokes at speeds of 4-12 m s-1.
AB - Hummingbirds fly with their wings almost fully extended during their entire wingbeat. This pattern, associated with having proportionally short humeral bones, long distal wing elements, and assumed to be an adaptation for extended hovering flight, has lead to predictions that the aerodynamic mechanisms exploited by hummingbirds during hovering should be similar to those observed in insects. To test these predictions, we flew rufous hummingbirds (Selasphorus rufus, 3.3 g, n = 6) in a variable-speed wind tunnel (0-12 ms-1 and measured wake structure and dynamics using digital particle image velocimetry (DPIV). Unlike hovering insects, hummingbirds produced 75% of their weight support during downstroke and only 25% during upstroke, an asymmetry due to the inversion of their cambered wings during upstroke. Further, we have found no evidence of sustained, attached leading edge vorticity (LEV) during up or downstroke, as has been seen in similarly-sized insects - although a transient LEV is produced during the rapid change in angle of attack at the end of the downstroke. Finally, although an extended-wing upstroke during forward flight has long been thought to produce lift and negative thrust, we found circulation during downstroke alone to be sufficient to support body weight, and that some positive thrust was produced during upstroke, as evidenced by a vortex pair shed into the wake of all upstrokes at speeds of 4-12 m s-1.
UR - http://www.scopus.com/inward/record.url?scp=34250829804&partnerID=8YFLogxK
U2 - 10.2514/6.2007-41
DO - 10.2514/6.2007-41
M3 - Conference contribution
AN - SCOPUS:34250829804
SN - 1563478900
SN - 9781563478901
T3 - Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
SP - 367
EP - 371
BT - Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
T2 - 45th AIAA Aerospace Sciences Meeting 2007
Y2 - 8 January 2007 through 11 January 2007
ER -