TY - JOUR
T1 - The fastest runner on artificial legs
T2 - Different limbs, similar function?
AU - Weyand, Peter G.
AU - Bundle, Matthew W.
AU - McGowan, Craig P.
AU - Grabowski, Alena
AU - Brown, Mary Beth
AU - Kram, Rodger
AU - Herr, Hugh
PY - 2009/9
Y1 - 2009/9
N2 - The recent competitive successes of a bilateral, transtibial amputee sprint runner who races with modern running prostheses has triggered an international controversy regarding the relative function provided by his artificial limbs. Here, we conducted three tests of functional similarity between this amputee sprinter and competitive male runners with intact limbs: the metabolic cost of running, sprinting endurance, and running mechanics. Metabolic and mechanical data, respectively, were acquired via indirect calorimetry and ground reaction force measurements during constant-speed, level treadmill running. First, we found that the mean gross metabolic cost of transport of our amputee sprint subject (174.9 ml O2·kg-1·km-1; speeds: 2.5- 4.1 m/s) was only 3.8% lower than mean values for intact-limb elite distance runners and 6.7% lower than for subelite distance runners but 17% lower than for intact-limb 400-m specialists [210.6 (SD 13.2) ml O 2·kg-1·km-1]. Second, the speeds that our amputee sprinter maintained for six all-out, constant-speed trials to failure (speeds: 6.6 -10.8 m/s; durations: 2-90 s) were within 2.2 (SD 0.6)% of those predicted for intact-limb sprinters. Third, at sprinting speeds of 8.0, 9.0, and 10.0 m/s, our amputee subject had longer foot-ground contact times [+14.7 (SD 4.2)%], shorter aerial [-26.4 (SD 9.9)%] and swing times [-15.2 (SD 6.9)%], and lower stance-averaged vertical forces [-19.3 (SD 3.1)%] than intact-limb sprinters [top speeds = 10.8 vs. 10.8 (SD 0.6) m/s]. We conclude that running on modern, lower-limb sprinting prostheses appears to be physiologically similar but mechanically different from running with intact limbs.
AB - The recent competitive successes of a bilateral, transtibial amputee sprint runner who races with modern running prostheses has triggered an international controversy regarding the relative function provided by his artificial limbs. Here, we conducted three tests of functional similarity between this amputee sprinter and competitive male runners with intact limbs: the metabolic cost of running, sprinting endurance, and running mechanics. Metabolic and mechanical data, respectively, were acquired via indirect calorimetry and ground reaction force measurements during constant-speed, level treadmill running. First, we found that the mean gross metabolic cost of transport of our amputee sprint subject (174.9 ml O2·kg-1·km-1; speeds: 2.5- 4.1 m/s) was only 3.8% lower than mean values for intact-limb elite distance runners and 6.7% lower than for subelite distance runners but 17% lower than for intact-limb 400-m specialists [210.6 (SD 13.2) ml O 2·kg-1·km-1]. Second, the speeds that our amputee sprinter maintained for six all-out, constant-speed trials to failure (speeds: 6.6 -10.8 m/s; durations: 2-90 s) were within 2.2 (SD 0.6)% of those predicted for intact-limb sprinters. Third, at sprinting speeds of 8.0, 9.0, and 10.0 m/s, our amputee subject had longer foot-ground contact times [+14.7 (SD 4.2)%], shorter aerial [-26.4 (SD 9.9)%] and swing times [-15.2 (SD 6.9)%], and lower stance-averaged vertical forces [-19.3 (SD 3.1)%] than intact-limb sprinters [top speeds = 10.8 vs. 10.8 (SD 0.6) m/s]. We conclude that running on modern, lower-limb sprinting prostheses appears to be physiologically similar but mechanically different from running with intact limbs.
KW - Biomechanics
KW - Fatigue
KW - Locomotion
KW - Prosthetics
KW - Running
KW - Running economy
KW - Sprinting
UR - http://www.scopus.com/inward/record.url?scp=69749091560&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00174.2009
DO - 10.1152/japplphysiol.00174.2009
M3 - Article
C2 - 19541739
AN - SCOPUS:69749091560
SN - 8750-7587
VL - 107
SP - 903
EP - 911
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 3
ER -