The footprint of Alaskan tundra fires during the past half-century: Implications for surface properties and radiative forcing

Adrian V. Rocha, Michael M. Loranty, Phil E. Higuera, Michelle C. MacK, Feng Sheng Hu, Benjamin M. Jones, Amy L. Breen, Edward B. Rastetter, Scott J. Goetz, Gus R. Shaver

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.

Original languageEnglish
Article number044039
JournalEnvironmental Research Letters
Volume7
Issue number4
DOIs
StatePublished - Oct 2012

Keywords

  • EVI
  • albedo
  • climate change
  • fire
  • radiative forcing
  • tundra

Fingerprint

Dive into the research topics of 'The footprint of Alaskan tundra fires during the past half-century: Implications for surface properties and radiative forcing'. Together they form a unique fingerprint.

Cite this