TY - JOUR
T1 - The multi-element stoichiometry of wet eucalypt forest is transformed by recent, frequent fire
AU - Butler, Orpheus M.
AU - Elser, James J.
AU - Lewis, Tom
AU - Maunsell, Sarah C.
AU - Rezaei Rashti, Mehran
AU - Chen, Chengrong
N1 - Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Background and aims: Fires can alter the elemental stoichiometry of ecosystems, reflecting altered patterns of biogeochemical cycling in the post-fire environment. However, elements other than carbon (C), nitrogen (N), and phosphorus (P) have rarely been studied in this context. Thus, we aimed to expand the understanding of fire’s stoichiometric and biogeochemical effects to encompass a broader suite of biogenic elements. Methods: We compared the stoichiometric ratios of C, N, P, potassium (K), sodium (Na), magnesium (Mg), and sulfur (S) in soil, plant litter, and beetles (Thalycrodes pulchrum) between forest plots that have been burned biennially at low intensity since 1972 and plots that have remained unburned. Results: Multi-element stoichiometry differed strongly between the fire regimes. Low intensity biennial burning was associated with depletion of C, N, and S relative to P, K, and to a small extent Mg and Na, in soil and litter. The stoichiometry of T. pulchrum biomass was not significantly affected by fire regime, but fire regime-associated variation in the stoichiometry of T. pulchrum biomass was positively correlated with the fire-induced stoichiometric shifts in soil. Conclusions: The effects of low intensity prescribed fire on ecological stoichiometry extend to Na, K, Mg, and S in ways consistent with the respective potentials of these elements to volatilize during fire or accumulate in the absence of fire. These effects vary among ecosystem components in a manner that reveals the importance of biological processes and constraints as factors that determine the nature, magnitude, and potential consequences of the stoichiometric signatures of fire regimes. We conclude that long-term changes in fire regime can disrupt or even decouple the biogeochemical cycles of numerous biogenic elements in the soil–plant system.
AB - Background and aims: Fires can alter the elemental stoichiometry of ecosystems, reflecting altered patterns of biogeochemical cycling in the post-fire environment. However, elements other than carbon (C), nitrogen (N), and phosphorus (P) have rarely been studied in this context. Thus, we aimed to expand the understanding of fire’s stoichiometric and biogeochemical effects to encompass a broader suite of biogenic elements. Methods: We compared the stoichiometric ratios of C, N, P, potassium (K), sodium (Na), magnesium (Mg), and sulfur (S) in soil, plant litter, and beetles (Thalycrodes pulchrum) between forest plots that have been burned biennially at low intensity since 1972 and plots that have remained unburned. Results: Multi-element stoichiometry differed strongly between the fire regimes. Low intensity biennial burning was associated with depletion of C, N, and S relative to P, K, and to a small extent Mg and Na, in soil and litter. The stoichiometry of T. pulchrum biomass was not significantly affected by fire regime, but fire regime-associated variation in the stoichiometry of T. pulchrum biomass was positively correlated with the fire-induced stoichiometric shifts in soil. Conclusions: The effects of low intensity prescribed fire on ecological stoichiometry extend to Na, K, Mg, and S in ways consistent with the respective potentials of these elements to volatilize during fire or accumulate in the absence of fire. These effects vary among ecosystem components in a manner that reveals the importance of biological processes and constraints as factors that determine the nature, magnitude, and potential consequences of the stoichiometric signatures of fire regimes. We conclude that long-term changes in fire regime can disrupt or even decouple the biogeochemical cycles of numerous biogenic elements in the soil–plant system.
KW - Biogeochemistry
KW - Carbon
KW - Disturbance
KW - Magnesium
KW - Nitrogen
KW - Phosphorus
KW - Potassium
KW - Prescribed burning
KW - Sodium
KW - Sulfur
UR - http://www.scopus.com/inward/record.url?scp=85076881685&partnerID=8YFLogxK
U2 - 10.1007/s11104-019-04397-z
DO - 10.1007/s11104-019-04397-z
M3 - Article
AN - SCOPUS:85076881685
SN - 0032-079X
VL - 447
SP - 447
EP - 461
JO - Plant and Soil
JF - Plant and Soil
IS - 1-2
ER -