Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns

Susan C. Tilton, Norman J. Karin, Ana Tolic, Yumei Xie, Xianyin Lai, Raymond F. Hamilton, Katrina M. Waters, Andrij Holian, Frank A. Witzmann, Galya Orr

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 μg/mL) and high (100 μg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.

Original languageEnglish
Pages (from-to)533-548
Number of pages16
JournalNanotoxicology
Volume8
Issue number5
DOIs
StatePublished - Aug 2014

Keywords

  • Biological network
  • Biological pathway
  • Differential gene regulation
  • Differential protein regulation
  • High aspect ratio nanomaterial

Fingerprint

Dive into the research topics of 'Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns'. Together they form a unique fingerprint.

Cite this