TY - JOUR
T1 - Trace gas emissions from laboratory biomass fires measured by open-path Fourier transform infrared spectroscopy
T2 - Fires in grass and surface fuels
AU - Goode, Jon G.
AU - Yokelson, Robert J.
AU - Susott, Ronald A.
AU - Ward, Darold E.
PY - 1999/9/20
Y1 - 1999/9/20
N2 - The trace gas emissions from six biomass fires, including three grass fires, were measured using a Fourier transform infrared (FTIR) spectrometer coupled to an open-path, multipass cell (OP-FTIR). The quantified emissions consisted of carbon dioxide, nitric oxide, water vapor, carbon monoxide, methane, ammonia, ethylene, acetylene, isobutene, methanol, acetic acid, formic acid, formaldehyde, and hydroxyacetaldehyde. By including grass fires in this study we have now measured smoke composition from fires in each major vegetation class. The emission ratios of the oxygenated compounds, formaldehyde, methanol, and acetic acid, were 1-2% of CO in the grass fires, similar to our other laboratory and field measurements but significantly higher than in some other studies. These oxygenated compounds are important, as they affect O3 and HOx chemistry in both biomass fire plumes and the free troposphere. The OP-FTIR data and the simultaneously collected canister data indicated that the dominant C4 emission was isobutene (C4H8) and not 1-butene. The rate constant for the reaction of isobutene with the OH radical is 60% larger than that of 1-butene. We estimate that 67±9% of the fuel nitrogen was volatilized with the major nitrogen emissions, ammonia, and nitric oxide, accounting for 22±8%.
AB - The trace gas emissions from six biomass fires, including three grass fires, were measured using a Fourier transform infrared (FTIR) spectrometer coupled to an open-path, multipass cell (OP-FTIR). The quantified emissions consisted of carbon dioxide, nitric oxide, water vapor, carbon monoxide, methane, ammonia, ethylene, acetylene, isobutene, methanol, acetic acid, formic acid, formaldehyde, and hydroxyacetaldehyde. By including grass fires in this study we have now measured smoke composition from fires in each major vegetation class. The emission ratios of the oxygenated compounds, formaldehyde, methanol, and acetic acid, were 1-2% of CO in the grass fires, similar to our other laboratory and field measurements but significantly higher than in some other studies. These oxygenated compounds are important, as they affect O3 and HOx chemistry in both biomass fire plumes and the free troposphere. The OP-FTIR data and the simultaneously collected canister data indicated that the dominant C4 emission was isobutene (C4H8) and not 1-butene. The rate constant for the reaction of isobutene with the OH radical is 60% larger than that of 1-butene. We estimate that 67±9% of the fuel nitrogen was volatilized with the major nitrogen emissions, ammonia, and nitric oxide, accounting for 22±8%.
UR - http://www.scopus.com/inward/record.url?scp=0001667929&partnerID=8YFLogxK
U2 - 10.1029/1999JD900360
DO - 10.1029/1999JD900360
M3 - Article
AN - SCOPUS:0001667929
SN - 0148-0227
VL - 104
SP - 21237
EP - 21245
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
IS - D17
M1 - 1999JD900360
ER -