Abstract
CD4+ T cells have been observed to acquire APC-derived membrane and membrane-associated molecules through trogocytosis in diverse immune settings. Despite this, the consequences of trogocytosis on the recipient T cell remain largely unknown. We previously reported that trogocytosed molecules on CD4+ T cells engage their respective surface receptors, leading to sustained TCR signaling and survival after APC removal. Using peptide-pulsed bone marrow–derived dendritic cells and transfected murine fibroblasts expressing antigenic MHC:peptide complexes as APC, we show that trogocytosis-positive CD4+ T cells display effector cytokines and transcription factor expression consistent with a TH2 phenotype. In vitro–polarized TH2 cells were found to be more efficient at performing trogocytosis than TH1 or nonpolarized CD4+ cells, whereas subsequent trogocytosis-mediated signaling induced TH2 differentiation in polarized TH1 and nonpolarized cells. Trogocytosis-positive CD4+ T cells generated in vivo also display a TH2 phenotype in both TCR-transgenic and wild-type models. These findings suggest that trogocytosis-mediated signaling impacts CD4+ T cell differentiation and effector cytokine production and may play a role in augmenting or shaping a TH2-dominant immune response.
Original language | English |
---|---|
Pages (from-to) | 2873-2887 |
Number of pages | 15 |
Journal | Journal of Immunology |
Volume | 202 |
Issue number | 10 |
DOIs | |
State | Published - May 15 2019 |