Tunneling ionization of the F 4 and D 6 states of vanadium: Exchange blockade

Xi Chu, Gerrit C. Groenenboom

Research output: Contribution to journalArticlepeer-review

Abstract

Using time-dependent density functional theory (TDDFT) calculations, we compare tunneling ionization of the aF4 ground state and the aD6 first excited state of vanadium in laser fields of intensities between 1.4 and 4.0×1013Wcm-2. The calculated ionization yields of the ground state of vanadium were already shown to agree well with experimental results [Chu and Groenenboom, Phys. Rev. A 94, 053417 (2016)2469-992610.1103/PhysRevA.94.053417]. We find that the tunneling ionization rate of the sextet state is lower than that of the quartet state. This is surprising, since the ionization potential of the sextet is lower than that of the quartet state. This finding, however, is consistent with the experimental observation that niobium, whose ground state is a6D1/2, has a much smaller ionization yield than vanadium (a4F3/2), even though their ionization potentials are extremely close [Smits et al., Phys. Rev. Lett. 93, 213003 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213003]. Our calculations demonstrate the existence of exchange blockade for the higher spin state. It arises from a strong field dynamic effect that mixes the highest and second highest electrons in the same set of unoccupied spin orbitals, which causes an isotropic attractive potential that confines the electrons close to the core.

Original languageEnglish
Article number013421
JournalPhysical Review A
Volume96
Issue number1
DOIs
StatePublished - Jul 20 2017

Fingerprint

Dive into the research topics of 'Tunneling ionization of the F 4 and D 6 states of vanadium: Exchange blockade'. Together they form a unique fingerprint.

Cite this