TY - JOUR
T1 - Understanding the origin and analysis of sediment-charcoal records with a simulation model
AU - Higuera, Philip E.
AU - Peters, Matthew E.
AU - Brubaker, Linda B.
AU - Gavin, Daniel G.
N1 - Funding Information:
This work was funded by the US National Science Foundation through a Graduate Research Fellowship to PEH and award number 0112586 to LBB, Patricia Anderson, and Thomas Brown from the Arctic System Science Program. We thank Douglas Sprugel for valuable insights throughout this work and for reviewing earlier versions of this manuscript, Jason Lynch for providing charcoal dispersal data from the Fort Providence experimental fire, and thoughtful reviews by Christopher Carcaillet and one anonymous reviewer.
PY - 2007/7
Y1 - 2007/7
N2 - Interpreting sediment-charcoal records is challenging because there is little information linking charcoal production from fires to charcoal accumulation in lakes. We present a numerical model simulating the major processes involved in this pathway. The model incorporates the size, location, and frequency of fires, primary and secondary charcoal transport, sediment mixing, and sediment sampling. We use the model as a tool to evaluate assumptions of charcoal dispersal and taphonomy and to assess the merits of inferring local and regional fire history by decomposing charcoal records into low-frequency ('background') and high-frequency ('peak') components. Under specific dispersal scenarios, the model generates records similar in appearance to sediment-charcoal records from Alaskan boreal forests. These scenarios require long-distance dispersal (e.g. 100-101 km), consistent with observations from wildfires but longer than previously inferred from experimental dispersal data. More generally, charcoal accumulation in simulated records mainly reflects area burned within the charcoal source area. Variability in charcoal peak heights is primarily explained by the size of charcoal source areas relative to the size of simulated fires, with an increase in this ratio resulting in increased variability in peak heights. Mixing and multi-year sampling add noise to charcoal records, obscuring the relationship between area burned and charcoal accumulation. This noise highlights the need for statistical treatments of charcoal records. Using simulated records we demonstrate that long-term averages of charcoal accumulation (>10×mean fire return interval) correlate well with area burned within the entire charcoal source area. We further demonstrate how decomposing simulated records to isolate the peak component emphasizes fire occurrence at smaller spatial scales (<1 km radius), despite the importance of long-distance charcoal dispersal in simulating charcoal records similar to observations. Together, these results provide theoretical support for the analysis of charcoal records using the decomposition approach.
AB - Interpreting sediment-charcoal records is challenging because there is little information linking charcoal production from fires to charcoal accumulation in lakes. We present a numerical model simulating the major processes involved in this pathway. The model incorporates the size, location, and frequency of fires, primary and secondary charcoal transport, sediment mixing, and sediment sampling. We use the model as a tool to evaluate assumptions of charcoal dispersal and taphonomy and to assess the merits of inferring local and regional fire history by decomposing charcoal records into low-frequency ('background') and high-frequency ('peak') components. Under specific dispersal scenarios, the model generates records similar in appearance to sediment-charcoal records from Alaskan boreal forests. These scenarios require long-distance dispersal (e.g. 100-101 km), consistent with observations from wildfires but longer than previously inferred from experimental dispersal data. More generally, charcoal accumulation in simulated records mainly reflects area burned within the charcoal source area. Variability in charcoal peak heights is primarily explained by the size of charcoal source areas relative to the size of simulated fires, with an increase in this ratio resulting in increased variability in peak heights. Mixing and multi-year sampling add noise to charcoal records, obscuring the relationship between area burned and charcoal accumulation. This noise highlights the need for statistical treatments of charcoal records. Using simulated records we demonstrate that long-term averages of charcoal accumulation (>10×mean fire return interval) correlate well with area burned within the entire charcoal source area. We further demonstrate how decomposing simulated records to isolate the peak component emphasizes fire occurrence at smaller spatial scales (<1 km radius), despite the importance of long-distance charcoal dispersal in simulating charcoal records similar to observations. Together, these results provide theoretical support for the analysis of charcoal records using the decomposition approach.
UR - http://www.scopus.com/inward/record.url?scp=34547428994&partnerID=8YFLogxK
U2 - 10.1016/j.quascirev.2007.03.010
DO - 10.1016/j.quascirev.2007.03.010
M3 - Article
AN - SCOPUS:34547428994
SN - 0277-3791
VL - 26
SP - 1790
EP - 1809
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
IS - 13-14
ER -