Water and nitrate loss from dryland agricultural soils is controlled by management, soils, and weather

W. Adam Sigler, Stephanie A. Ewing, Clain A. Jones, Robert A. Payn, Perry Miller, Marco Maneta

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The vast majority (82 %) of the earth's cultivated area is not irrigated, and half is in semi-arid regions where water tends to limit crop growth. In dryland semi-arid agroecosystems, any precipitation not transpired indicates crop yield that is below potential. Precipitation that is partitioned to deep percolation can transport nitrate out of the root zone, reducing nitrogen use efficiency and potentially contaminating groundwater. To mitigate loss of crop yield to drought, the practice of chemical summer-fallow (suppressing plant growth for a full growing season with herbicide) has been common in semi-arid regions to store water for the following growing season. However, precipitation losses during fallow tend to exceed the amount of precipitation stored, and fallow tends to increase nitrate leaching. We present model simulations informed by field observations that explore the interaction of crop rotation, weather, and soils as controls on precipitation partitioning and nitrate leaching. Simulations reveal that high intensity precipitation periods produce hot moments of deep percolation and nitrate leaching such that 54 % of deep percolation and 56 % of leaching occurs in two of 14 model years. Simulations indicate that thin soils (having limited water storage capacity) produce hot spots for deep percolation and nitrate leaching such that thinner soils (<25 cm) experience water and nitrate loss rates five to 16 times higher than thicker soils (>100 cm). The practice of fallow facilitates mineralization of soil organic nitrogen to nitrate and increases deep percolation, magnifying the interaction of hot moments and hot spots. Simulations suggest that a field with fallow in rotation once every three years experiences 55 % of its deep percolation and 43 % of its leaching losses during fallow years.

Original languageEnglish
Article number107158
JournalAgriculture, Ecosystems and Environment
Volume304
DOIs
StatePublished - Dec 1 2020

Keywords

  • Deep percolation
  • Hydrus
  • Leach
  • Rainfed
  • Soil moisture

Fingerprint

Dive into the research topics of 'Water and nitrate loss from dryland agricultural soils is controlled by management, soils, and weather'. Together they form a unique fingerprint.

Cite this