TY - JOUR
T1 - Xenopus oocyte electrophysiology in GPCR drug discovery.
AU - Hansen, Kasper B.
AU - Bräuner-Osborne, Hans
PY - 2009
Y1 - 2009
N2 - Deorphanization of the large group of G protein-coupled receptors (GPCRs) for which an endogenous activating ligand has not yet been identified (orphan GPCRs) has become increasingly difficult. A specialized technique that has been successfully applied to deorphanize some of these GPCRs involves two-electrode voltage-clamp recordings of currents through ion channels, which are activated by GPCRs heterologously expressed in Xenopus oocytes. The ion channels that couple to GPCR activation in Xenopus oocytes can be endogenous calcium-activated chloride channels (CaCCs) or heterologously expressed G protein-coupled inwardly rectifying potassium channels (GIRKs). We will describe a general approach for expression of GPCRs in Xenopus oocytes and characterization of these using electrophysiological recordings. We will focus on the detection of GPCR activation by recordings of currents through CaCCs that are activated by calcium release from the endoplasmic reticulum and thus the G(q) signaling pathway.
AB - Deorphanization of the large group of G protein-coupled receptors (GPCRs) for which an endogenous activating ligand has not yet been identified (orphan GPCRs) has become increasingly difficult. A specialized technique that has been successfully applied to deorphanize some of these GPCRs involves two-electrode voltage-clamp recordings of currents through ion channels, which are activated by GPCRs heterologously expressed in Xenopus oocytes. The ion channels that couple to GPCR activation in Xenopus oocytes can be endogenous calcium-activated chloride channels (CaCCs) or heterologously expressed G protein-coupled inwardly rectifying potassium channels (GIRKs). We will describe a general approach for expression of GPCRs in Xenopus oocytes and characterization of these using electrophysiological recordings. We will focus on the detection of GPCR activation by recordings of currents through CaCCs that are activated by calcium release from the endoplasmic reticulum and thus the G(q) signaling pathway.
UR - http://www.scopus.com/inward/record.url?scp=67650410456&partnerID=8YFLogxK
U2 - 10.1007/978-1-60327-317-6_25
DO - 10.1007/978-1-60327-317-6_25
M3 - Article
C2 - 19513662
AN - SCOPUS:67650410456
SN - 1064-3745
VL - 552
SP - 343
EP - 357
JO - Methods in molecular biology (Clifton, N.J.)
JF - Methods in molecular biology (Clifton, N.J.)
ER -